分析 設(shè)方程x2+2mx-m+12=0兩個(gè)實(shí)數(shù)根為s、t,由已知可得s-2>0、t-2>0,進(jìn)而由一元二次方程根與系數(shù)的關(guān)系(韋達(dá)定理)可構(gòu)造關(guān)于m的不等式,解得m的取值范圍.
解答 解:設(shè)方程x2+2mx-m+12=0兩個(gè)實(shí)數(shù)根為s、t,
∴s-2>0、t-2>0,△=(2m)2-4(12-m)≥0,
解得m≤-4或,m>3,
由根與系數(shù)關(guān)系可得:s+t=-2m,st=12-m,
∴(s-2)(t-2)=st-2(s+t)+4=,12-m-2(-2m)+4=16+3m>0,解得m>-$\frac{16}{3}$,
且(s-2)+(t-2)=(s+t)-4=-2m-4>0,解得m<-2,
所以實(shí)數(shù)m的取值范圍:-$\frac{16}{3}$<m≤-4.
點(diǎn)評 本題考查的知識點(diǎn)是一元二次方程根與系數(shù)的關(guān)系(韋達(dá)定理),其中根據(jù)已知分析出s-2>0、t-2>0,進(jìn)而結(jié)合韋達(dá)定理構(gòu)造不等式組是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.55 | B. | 1.65 | C. | 1.75 | D. | 1.85 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com