11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于(  )
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

分析 利用同角三角函數(shù)的基本關(guān)系式以及兩角和與差的余弦函數(shù)化簡(jiǎn)求解即可.

解答 解:$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,
可得$sin(α+\frac{π}{6})=\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$.
cosα=cos(α+$\frac{π}{6}$-$\frac{π}{6}$)=$cos(α+\frac{π}{6})cos\frac{π}{6}$+$sin(α+\frac{π}{6})sin\frac{π}{6}$=$\frac{1}{3}×\frac{\sqrt{3}}{2}+\frac{2\sqrt{2}}{3}×\frac{1}{2}$=$\frac{2\sqrt{2}+\sqrt{3}}{6}$.
故選:B

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知⊙O是邊長(zhǎng)為2的正方形ABCD的內(nèi)切圓,P是⊙O上任意一點(diǎn),則AP+$\sqrt{2}$BP的最小值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(ωx+φ),(x∈R,A>0,φ>0)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{2}$,且圖象上一點(diǎn)為M($\frac{2}{3}π$,-2).
(1)求f(x)的函數(shù)解析式;
(2)若x∈[0,$\frac{π}{4}$],求f(x)的最值及相應(yīng)的值;
(3)將函數(shù)f(x)的圖象向左平移$\frac{π}{2}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,求經(jīng)以上變換后得到的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果一個(gè)點(diǎn)是一個(gè)指數(shù)函數(shù)的圖象與一個(gè)對(duì)數(shù)函數(shù)的圖象的公共點(diǎn),那么稱這個(gè)點(diǎn)為“好點(diǎn)”,在下面的六個(gè)點(diǎn)M(1,1)、N(1,2)、P(1,3)、Q(2,1)、R(2,2)、T(2,3)中,“好點(diǎn)”的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合 A={1,2,4},B={a,3,5},若 A∩B={4},則 A∪B=( 。
A.{4}B.{1,2,4,5}C.{1,2,3,4,5}D.{a,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知球O的體積為36π,則球的內(nèi)接正方體的棱長(zhǎng)是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=2sinx+$\frac{3\sqrt{3}}{π}$x+m,x∈[-$\frac{π}{3}$,$\frac{π}{3}$]有零點(diǎn),則m的取值范圍是( 。
A.[2$\sqrt{3}$,+∞)B.(-∞,2$\sqrt{3}$]C.(-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞)D.[-2$\sqrt{3}$,2$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是(  )
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知(x,y)滿足不等式組$\left\{\begin{array}{l}x+y-2≥0\\ x-y≥0\\ 2x-y-4≤0\end{array}\right.$則$\frac{y}{x+1}$的取值范圍是$[0,\frac{4}{5}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案