【題目】某店銷售進(jìn)價(jià)為2元/件的產(chǎn)品,假設(shè)該店產(chǎn)品每日的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足的關(guān)系式,其中.
(1)若產(chǎn)品銷售價(jià)格為4元/件,求該店每日銷售產(chǎn)品所獲得的利潤(rùn);
(2)試確定產(chǎn)品銷售價(jià)格的值,使該店每日銷售產(chǎn)品所獲得的利潤(rùn)最大.(保留1位小數(shù)點(diǎn))
【答案】(1)千元;(2)當(dāng)銷售價(jià)格為元/件時(shí),利潤(rùn)最大.
【解析】
試題分析:(1)將代入銷售量表達(dá)式先求出銷售量,再計(jì)算利潤(rùn)即可;
(2)先列出利潤(rùn)函數(shù),
再求導(dǎo),由導(dǎo)數(shù)與單調(diào)性的關(guān)系可知當(dāng)時(shí)利潤(rùn)最大.
試題解析: (1)當(dāng)時(shí),銷量千件,
所以該店每日銷售產(chǎn)品所獲得的利潤(rùn)是千元;
(2)該店每日銷售產(chǎn)品所獲得的利潤(rùn):
從而
令,得,且在上,,函數(shù)單調(diào)遞增;
在上,,函數(shù)遞減,
所以是函數(shù)在內(nèi)的極大值點(diǎn),也是最大值點(diǎn),
所以當(dāng)時(shí),函數(shù)取得最大值.
故當(dāng)銷售價(jià)格為3.3元/件時(shí),利潤(rùn)最大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax- -5ln x,g(x)=x2-mx+4.
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)當(dāng)a=2時(shí),若x1∈(0,1),x2∈[1,2],都有f(x1)≥g(x2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,, ,平面,為中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)設(shè),,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,是長(zhǎng)方形,平面平面,且是的中點(diǎn).
(Ⅰ) 求證:平面;
(Ⅱ) 求三棱錐的體積;
(Ⅲ)若點(diǎn)是線段上的一點(diǎn),且平面平面,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為5的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列變化過程中,變量之間不是函數(shù)關(guān)系的為( )
A.地球繞太陽公轉(zhuǎn)的過程中,二者間的距離與時(shí)間的關(guān)系
B.在銀行,給定本金和利率后,活期存款的利息與存款天數(shù)的關(guān)系
C.某地區(qū)玉米的畝產(chǎn)量與灌溉次數(shù)的關(guān)系
D.近年來中國(guó)高鐵年運(yùn)營(yíng)里程與年份的關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是( )
①圓柱的軸截面是過母線的截面中最大的一個(gè);
②用任意一個(gè)平面去截球體得到的截面一定是一個(gè)圓面;
③用任意一個(gè)平面去截圓錐得到的截面一定是一個(gè)圓面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動(dòng)直線與圓:相交于、兩點(diǎn), 與直線:相交于.
(1)當(dāng)與垂直時(shí),求直線的方程,并判斷圓心與直線的位置關(guān)系;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)求曲線上任意一點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com