11.直線mx-y-(m-4)=0(m∈R)與線段y=$\frac{4}{3}$x-4(0≤x≤3)恒有公共點(diǎn),則m的取值范圍是(  )
A.m≥8或m≤-2B.m≥8C.m≤-2D.-2≤x≤8

分析 由題意可得直線mx-y-(m-4)=0的斜率為m,恒過定點(diǎn)M(1,4),而線段y=$\frac{4}{3}$x-4(0≤x≤3)的兩個端點(diǎn)分別為A(0,-4)、B(3,0),
數(shù)形結(jié)合求得m的范圍.

解答 解:直線mx-y-(m-4)=0(m∈R),即 m(x-1)-y+4=0,
它的斜率為m,恒過定點(diǎn)M(1,4),
而線段y=$\frac{4}{3}$x-4(0≤x≤3)的兩個端點(diǎn)分別為A(0,-4)、B(3,0),
如圖所示:
故m≥KMA,或 m≤KMB,即 m≥8 或m≤-2,
故選:A.

點(diǎn)評 本題主要考查直線經(jīng)過定點(diǎn)問題,直線的斜率公式,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,某機(jī)械轉(zhuǎn)動的三個齒輪嚙合傳動.若A輪的直徑為180mm,B、C兩輪的直徑都是120mm,且∠ABC=70°,求A、C兩齒輪的中心距離(精確到1mm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓$\frac{{x}^{2}}{4}$+y2=1的弦AB的中點(diǎn)為P(1,$\frac{1}{2}$),則弦AB所在直線的方程及其弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l:y=kx+2k+1.
(1)求證:直線l恒過一個定點(diǎn);
(2)當(dāng)-3<x<3時,直線上的點(diǎn)都在x軸上方,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sinx•$\sqrt{si{n}^{2}x}$+cosx•$\sqrt{co{s}^{2}x}$=-1,則x為( 。
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓C的圓心在直線3x-y=0上,半徑為1且與直線x-y=0相切,則圓C的標(biāo)準(zhǔn)方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下四個命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②對于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均有x2+x+1≥0;
③設(shè)隨機(jī)變量 X~N(1,σ2),若P(0<X<1)=0.35,則P(0<X<2)=0.7;
④兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1.
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.比較a4+5a2+7與(a2+2)2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在側(cè)面ABB1A1為長方形的三棱柱ABC-A1B1C1中,AB=a,AA1=$\sqrt{2}$a,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1,且OC=OA.
(1)求點(diǎn)C1到側(cè)面ABB1A1的距離;
(2)求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案