【題目】已知函數(shù),且對(duì)定義域上的任意有,當(dāng)時(shí),,則( )
A.B.
C.D.
【答案】C
【解析】
由題意明確函數(shù)的單調(diào)性,利用單調(diào)性比較大小即可.
令x=1,y=0可得f(1)=f(1)f(0)
∵f(1)>1,∴f(0)=1
當(dāng)x<0時(shí),f(x﹣x)=f(0)=f(x)f(﹣x)=1
﹣x>0,f(﹣x)>1,∴
∴x∈R時(shí),f(x)>0
任取x1<x2,則f(x1)﹣f(x2)=f[(x1﹣x2)+x2]﹣f(x2)=f(x1﹣x2)f(x2)﹣f(x2)=f(x2)[f(x1﹣x2)﹣1]
∵x1<x2,∴x1﹣x2<0
∵x<0時(shí),f(x)<1,∴f(x1﹣x2)﹣1<0
∴f(x1)﹣f(x2)<0,∴f(x1)<f(x2)
∴f(x)是定義域上的增函數(shù);
又
∴
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點(diǎn),,為橢圓上的動(dòng)點(diǎn),,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長(zhǎng)度與肚臍至足底的長(zhǎng)度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長(zhǎng)度與咽喉至肚臍的長(zhǎng)度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長(zhǎng)為105cm,頭頂至脖子下端的長(zhǎng)度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為, , , ,有以下結(jié)論:
①當(dāng)時(shí),甲走在最前面;
②當(dāng)時(shí),乙走在最前面;
③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①若集合,,則;
②定義在上的函數(shù), 若為奇函數(shù),則必有;
③方程有兩個(gè)實(shí)根;
④存在,,使得.
其中說法正確的序號(hào)是( )
A.②③B.②④
C.①②③D.②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,且,,三點(diǎn)中恰有兩點(diǎn)在拋物線上,另一點(diǎn)是拋物線的焦點(diǎn).
(1)求證:、、三點(diǎn)共線;
(2)若直線過拋物線的焦點(diǎn)且與拋物線交于、兩點(diǎn),點(diǎn)到軸的距離為,點(diǎn)到軸的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,中美貿(mào)易摩擦不斷.特別是美國對(duì)我國華為的限制.盡管美國對(duì)華為極力封鎖,百般刁難,并不斷加大對(duì)各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2018年不僅凈利潤(rùn)創(chuàng)下記錄,海外增長(zhǎng)同樣強(qiáng)勁.今年,我國華為某一企業(yè)為了進(jìn)一步增加市場(chǎng)競(jìng)爭(zhēng)力,計(jì)劃在2020年利用新技術(shù)生產(chǎn)某款新手機(jī).通過市場(chǎng)分析,生產(chǎn)此款手機(jī)全年需投入固定成本250萬,每生產(chǎn)(千部)手機(jī),需另投入成本萬元,且 ,由市場(chǎng)調(diào)研知,每部手機(jī)售價(jià)0.7萬元,且全年內(nèi)生產(chǎn)的手機(jī)當(dāng)年能全部銷售完.
()求出2020年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千部)的函數(shù)關(guān)系式,(利潤(rùn)=銷售額—成本);
2020年產(chǎn)量為多少(千部)時(shí),企業(yè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對(duì)學(xué)生的期末復(fù)習(xí)有著重要的影響某校隨機(jī)抽取200名學(xué)生,對(duì)學(xué)習(xí)成績(jī)和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
善于使用學(xué)案 | 不善于使用學(xué)案 | 合計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 40 | ||
學(xué)習(xí)成績(jī)一般 | 30 | ||
合計(jì) | 200 |
已知隨機(jī)抽查這200名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
參考公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(I)完成列聯(lián)表(不用寫計(jì)算過程);
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績(jī)與對(duì)待學(xué)案的使用態(tài)度有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前共享單車基本覆蓋饒城市區(qū),根據(jù)統(tǒng)計(jì),市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是學(xué)生(含大中專、高職及中學(xué)生),若市區(qū)人口按40萬計(jì)算,學(xué)生人數(shù)約為9.6萬.
(1)任選出一名學(xué)生,求他(她)騎行過共享單車的概率;
(2)隨著單車投放數(shù)量增加,亂停亂放成為城市管理的問題,如表是本市某組織累計(jì)投放單車數(shù)量與亂停亂放單車數(shù)量之間關(guān)系圖表:
累計(jì)投放單車數(shù)量 | 100000 | 120000 | 150000 | 200000 | 230000 |
亂停亂放單車數(shù)量 | 1400 | 1700 | 2300 | 3000 | 3600 |
計(jì)算關(guān)于的線性回歸方程(其中精確到,值保留三位有效數(shù)字),并預(yù)測(cè)當(dāng)時(shí),單車亂停亂放的數(shù)量;
(3)已知信州區(qū)、廣豐區(qū)、上饒縣、經(jīng)開區(qū)四區(qū)中,其中有兩個(gè)區(qū)的單車亂停亂放數(shù)量超過標(biāo)準(zhǔn),在“大美上饒”活動(dòng)中,檢查組隨機(jī)抽取兩個(gè)區(qū)調(diào)查單車亂停亂放數(shù)量,表示“單車亂停亂放數(shù)量超過標(biāo)準(zhǔn)的區(qū)的個(gè)數(shù)”,求的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘估計(jì)分別為
,,
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com