(1)已知f(α)=
sin(π-α)cos(2π-α)
sin(
π
2
+α)tan(π+α)
,求f(
31π
3

(2)已知cos(
π
2
+α)=2sin(α-
π
2
),求:
sin(π-α)+cos(α+π)
5cos(
2
-α)+3sin(
2
-α)
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:計(jì)算題,三角函數(shù)的求值
分析:利用誘導(dǎo)公式,代入計(jì)算,即可得出結(jié)論.
解答: 解:(1)f(α)=
sin(π-α)cos(2π-α)
sin(
π
2
+α)tan(π+α)
=
sinαcosα
cosαtanα
=cosα,
∴f(
31π
3
)=cos(
31π
3
)=cos
π
3
=
1
2

(2)∵cos(
π
2
+α)=2sin(α-
π
2
),
∴-sinα=-2cosα,
∴sinα=2cosα,
sin(π-α)+cos(α+π)
5cos(
2
-α)+3sin(
2
-α)
=
sinα-cosα
5sinα-3cosα
=
1
7
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x

(1)判斷函數(shù)f(x)的奇偶性并加以證明;
(2)若a,b∈(-1,1),求證:f(a)+f(b)=f(
a+b
1+ab
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a+a-1=3,求a 
1
2
-a -
1
2
及a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(1,
3
2
),離心率為
3
2
,又橢圓內(nèi)接四邊形ABCD(點(diǎn)A、B、C、D在橢圓上)的對(duì)角線AC,BD相交于點(diǎn)P(1,
1
4
),且
AP
=2
PC
,
BP
=2
PD

(1)求橢圓的方程;
(2)求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究性學(xué)習(xí)小組對(duì)晝夜溫差與某種子發(fā)芽數(shù)的關(guān)系進(jìn)行研究,他們分別記錄了四天中每天晝夜溫差與每天100粒種子浸泡后的發(fā)芽數(shù),得到如下資料:
時(shí)間第一天第二天第三天第四天
溫差(℃)910811
發(fā)芽(粒)33392646
(1)求這四天浸泡種子的平均發(fā)芽率;
(2)有這樣一個(gè)研究項(xiàng)目,在這四天中任選兩天,記發(fā)芽的種子數(shù)分別為m,n(m<n),請(qǐng)以(m,n)的形式列出所有的基本事件,記事件A為“m,n滿足
m>30
n>40
”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C:y2=2px(p>0),過拋物線C的焦點(diǎn)F(1,0)的直線l與拋物線交于A,B兩點(diǎn),交y軸于點(diǎn)P.
(1)求證:|PF|2=|PA|•|PB|;
(2)過P作拋物線C的切線,切點(diǎn)為D(異于原點(diǎn)),是否存在常數(shù)λ,使得
1
kDA
+
1
kDB
=
λ
kDF
恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,對(duì)任意實(shí)數(shù)x、y都有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí)f(x)>0且f(2)=6.
(1)求證:函數(shù)f(x)為奇函數(shù);
(2)證明函數(shù)f(x)在R上是增函數(shù);
(3)在區(qū)間[-4,4]上,求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)是R上的增函數(shù),且過(-3,-1)和(1,2)兩點(diǎn),集合A={x|f(x)<-1或f(x)>2},關(guān)于x的不等式(
1
2
2x>2-a-x(a∈R)的解集為B.
(1)求集合A;
(2)求使A∩B=B成立的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-loga(x+2)+1(a>0,a≠1)的圖象過定點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案