【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數據 (成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,求其中成績在區(qū)間上的選手人數;
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統(tǒng)計.為了便于區(qū)別性別,輸入時,男選手的成績數據用正數,女選手的成績數據用其相反數(負數),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數值和的統(tǒng)計意義.
【答案】(Ⅰ)4;(Ⅱ)50.
【解析】試題分析:(Ⅰ)將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,則男選手分為段,每段抽取1人,則其中成績在區(qū)間上的恰有4段,每段1人,可得成績在區(qū)間上的選手人數為4(Ⅱ)男選手的成績數據用正數,女選手的成績數據用其相反數(負數),所以可得條件①處填寫,M表示對男選手的成績進行累加,W表示對女選手的成績的相反數進行累加,所以表示50位選手的總成績, 故的統(tǒng)計意義:50名選手的平均成績. 所以輸出數值的統(tǒng)計意義:24名男選手的平均成績 .
試題解析:
(Ⅰ)依題意,男選手分為段,每段抽取1人,
其中成績在區(qū)間上的恰有4段,每段1人,
成績在區(qū)間上的選手人數為4.
(Ⅱ)①處填寫
表示對男選手的成績進行累加,
所以輸出數值的統(tǒng)計意義:24名男選手的平均成績 , 表示對男選手的成績進行累加, 表示對女選手的成績的相反數進行累加,所以表示50位選手的總成績,
輸出數值的統(tǒng)計意義:50名選手的平均成績.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)用五點法畫出它在一個周期內的閉區(qū)間上的圖象;
(2)指出的周期、振幅、初相、對稱軸;
(3)說明此函數圖象可由的圖象經怎樣的變換得到.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中有a個黑球和b個白球,隨機地每次從中取出一球,每次取后不放回,記事件A為“直到第k次才取到黑球”,其中1≤k≤b;事件B為“第7次取出的球恰好是黑球”,其中1≤k≤b。
(Ⅰ)若a=5,b=3,k=2,求事件A發(fā)生的概率;
(Ⅱ)判斷事件B發(fā)生的概率是否隨k取值的變化而變化?并說明理由;
(Ⅲ)比較a=5,b=9時事件A發(fā)生的概率與a=5,b=10時事件A發(fā)生的概率的大小,并說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、是兩條不同的直線, , , 是三個不同的平面,給出下列四個命題:
①若, ,則 ②若, , ,則
③若, ,則 ④若, ,則
其中正確命題的序號是( ).
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的圓心為,直線.
(1)求圓心的軌跡方程;
(2)若,求直線被圓所截得弦長的最大值;
(3)若直線是圓心下方的切線,當在上變化時,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.
(I)求雙曲線的標準方程.
(II)若點M在雙曲線上, 是雙曲線的左、右焦點,且|MF1|+|MF2|=試判斷的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河南南陽市一中上學期第三次月考】已知點為坐標原點, 是橢圓上的兩個動點,滿足直線與直線關于直線對稱.
(I)證明直線的斜率為定值,并求出這個定值;
(II)求的面積最大時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數n都成立,則的值為( )
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com