【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分數(shù)據(jù),如表:

ωx+φ

0

π

x

x1

x2

x3

Asin(ωx+φ)+B

0

0

0


(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 mf( )≥m+2對任意x∈[0,2π]恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:由 ,得 ,

,

∴x1=﹣ ,x2= ,x3=

又∵A= ,B=0,

∴f(x)= sin( x+


(2)解:∵3sin2 mf( )≥m+2對任意x∈[0,2π]恒成立,

∴3sin2 msin ﹣m﹣2≥0,

設sin ∈[0,1],

則m≤ ,

設t=3sin +1,t∈[1,4],則sin =

∴y= = = (t﹣ ﹣2)在[1,4]上是增函數(shù)

∴t=1時,ymin=﹣2,

∴m≤﹣2


【解析】(1)由表中數(shù)據(jù)列關于ω、φ的二元一次方程組,求得ω、φ的值,得到函數(shù)解析式,進一步求得x1、x2、x3;(2)分離參數(shù),構造函數(shù),利用換元法,根據(jù)函數(shù)的單調性求出函數(shù)的最值小值,即可求m的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn= ,且b2= ,證明:b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正實數(shù)a,b滿足 + = ,則ab+a+b的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時點M到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點E是B1C1的中點,求證:AE∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準備過線段AB上一點E設計一條直線EF(點F在邊BC或CD上,不計路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測量得AB=18m,BC=10m,∠ABC=120°.設EB=x,EF=y(單位:m).
(1)當點F與C重合時,試確定點E的位置;
(2)求y關于x的函數(shù)關系式;
(3)請確定點E、F的位置,使直路EF長度最短.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個樣本M的數(shù)據(jù)是x1 , x2 , ,xn , 它的平均數(shù)是5,另一個樣本N的數(shù)據(jù)x12 , x22 , ,xn2它的平均數(shù)是34.那么下面的結果一定正確的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學有劉徽發(fā)現(xiàn)當圓內接多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的“徽率”.某同學利用劉徽的“割圓術”思想設計了一個計算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)(

A.2.598
B.3.106
C.3.132
D.3.142

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

同步練習冊答案