已知是雙曲線的兩個(gè)焦點(diǎn),Q是雙曲線上任一點(diǎn)(不是頂點(diǎn)),從某一焦點(diǎn)引的平分線的垂線,垂足為P,則點(diǎn)P的軌跡是

A.直線B.圓C.橢圓D.雙曲線

B

解析試題分析:利用已知條件判斷出△AQF1為等腰三角形,利用雙曲線的定義及等量代換得到AF2=2a,利用三角形的中位線得到OP=a,利用圓的定義判斷出點(diǎn)的軌跡.解:設(shè)O為F1F2的中點(diǎn),延長(zhǎng)F1P交QF2于A,連接OP,據(jù)題意知△AQF1為等腰三角形,所以QF1=QA,∵|QF1-QF2|=2a,∴∵|QA-QF2|=2a,即AF2=2a,∵OP為△F1F2A的中位線,∴OP=a,故點(diǎn)P的軌跡為以O(shè)為圓心,以a為半徑的圓,故選B
考點(diǎn):雙曲線
點(diǎn)評(píng):本題考查雙曲線的定義、原點(diǎn)定義及等量代換的數(shù)學(xué)方法、三角形的中位線性質(zhì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知過拋物線y2 =2px(p>0)的焦點(diǎn)F的直線x-my+m=0與拋物線交于A,B兩點(diǎn),且△OAB(O為坐標(biāo)原點(diǎn))的面積為2,則m6+ m4的值為(   )

A.1 B. 2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過雙曲線的一個(gè)焦點(diǎn)作垂直于實(shí)軸的弦 ,是另一焦點(diǎn),若∠,則雙曲線的離心率等于(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

過橢圓左焦點(diǎn)F且傾斜角為的直線交橢圓于A、B兩點(diǎn),若,則橢圓的離心率為(    )
A.              B.              C.                D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

與拋物線相切傾斜角為的直線L與x軸和y軸的交點(diǎn)分別是A和B,那么過A、B兩點(diǎn)的最小圓截拋物線的準(zhǔn)線所得的弦長(zhǎng)為
A.4                B.2        C.2            D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在拋物線上,橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為,則的值為(   )

A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若點(diǎn)O和點(diǎn)F(﹣2, 0)分別是雙曲線的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則的取值范圍為

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)P是雙曲線=1(a>0 ,b>0)上的點(diǎn),F(xiàn)1、F2是焦點(diǎn),雙曲線的離心 率是,且∠F1PF2=90°,△F1PF2面積是9,則a + b=(   )

A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若拋物線C1:(p >0)的焦點(diǎn)F恰好是雙曲線C2:(a>0,b >0)的右焦點(diǎn),且它們的交點(diǎn)的連線過點(diǎn)F,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案