函數(shù)(x≠-2)在區(qū)間[0,5]上的最大(小)值分別是

[  ]

A.,0
B.,0
C.
D.最大值,無最小值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)一模)函數(shù)B1的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2-2x(x∈R)是單函數(shù);
②函數(shù)f(x)=
log2x, x≥2
2-x,  x<2
是單函數(shù);
③若y=f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④函數(shù)f(x)在定義域內某個區(qū)間D上具有單調性,則f(x)一定是單函數(shù).
其中的真命題是
(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•奉賢區(qū)二模)已知函數(shù)f(x)=2sin2
π
4
+x)-
3
cos2x
(I)求f(x)的周期和單調遞增區(qū)間
(II)若關于x的方程f(x)-m=2在x∈[
π
4
,
π
2
]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•武進區(qū)模擬)設函數(shù)f(x)=ax2+bx+1,a>0,b∈R 的最小值為-a,f(x)=0兩個實根為x1、x2
(1)求x1-x2的值;
(2)若關于x的不等式f(x)<0解集為A,函數(shù)f(x)+2x在A上不存在最小值,求a的取值范圍;
(3)若-2<x1<0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)二模)設定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導函數(shù).當x∈[0,π]時,0<f(x)<1;當x∈(0,π)且x≠
π
2
時,(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點個數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•靜安區(qū)二模)某種洗衣機在洗滌衣服時,需經(jīng)過進水、清洗、排水、脫水四個連續(xù)的過程.假設進水時水量勻速增加,清洗時水量保持不變.已知進水時間為4分鐘,清洗時間為12分鐘,排水時間為2分鐘,脫水時間為2分鐘.洗衣機中的水量y(升)與時間x(分鐘)之間的關系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
請根據(jù)表中提供的信息解答下列問題:
(1)試寫出當x∈[0,16]時y關于x的函數(shù)解析式,并畫出該函數(shù)的圖象;
(2)根據(jù)排水階段的2分鐘點(x,y)的分布情況,可選用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d為常數(shù)),作為在排水階段的2分鐘內水量y與時間x之間關系的模擬函數(shù).試分別求出這兩個函數(shù)的解析式;
(3)請問(2)中求出的兩個函數(shù)哪一個更接近實際情況?(寫出必要的步驟)

查看答案和解析>>

同步練習冊答案