【題目】下列各對(duì)直線不互相垂直的是 (  )

A. l1的傾斜角為120°,l2過(guò)點(diǎn)P(1,0),Q(4, )

B. l1的斜率為-,l2過(guò)點(diǎn)P(1,1),Q

C. l1的傾斜角為30°,l2過(guò)點(diǎn)P(3, ),Q(4,2)

D. l1過(guò)點(diǎn)M(1,0),N(4,-5),l2過(guò)點(diǎn)P(-6,0),Q(-1,3)

【答案】C

【解析】Al1的傾斜角為120°,l2過(guò)點(diǎn)P(10),Q(4, ),kPQ=,故兩直線垂直;

Bl2過(guò)點(diǎn)P(1,1),Q,kPQ=故兩條直線垂直。

C, kPQ=,所以l1不與l2垂直.

D,l1過(guò)點(diǎn)M(1,0),N(4-5), l2過(guò)點(diǎn)P(-6,0),Q(-13),kPQ=,故兩條直線垂直。

故答案為C。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隧道的截面是半徑為4.0 m的半圓,車(chē)輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m、高為3 m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?假設(shè)貨車(chē)的最大寬度為a m那么要正常駛?cè)朐撍淼?/span>,貨車(chē)的限高為多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長(zhǎng)為aMBD1的中點(diǎn),NA1C1上,且滿(mǎn)足|A1N|=3|NC1|.

(1)求MN的長(zhǎng);

(2)試判斷△MNC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:

所成角的正切值是;

;

的體積是;

平面平面;

直線與平面所成角為

其中正確的有 .(填寫(xiě)你認(rèn)為正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=90°,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG.

(1)求證:EC⊥CD.

(2)求證:AG∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A(n)表示正整數(shù)n的個(gè)位數(shù),an=A(n2)﹣A(n),A為數(shù)列{an}的前202項(xiàng)和,函數(shù)f(x)=ex﹣e+1,若函數(shù)g(x)滿(mǎn)足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),則數(shù)列{bn}的前n項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖的示意圖如圖所示.

(1)請(qǐng)按字母FG、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說(shuō)明理由)

(2)判斷平面BEG與平面ACH的位置關(guān)系.并說(shuō)明你的結(jié)論;

(3)證明:直線DF平面BEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB是☉O的直徑,點(diǎn)C是☉O上的動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),過(guò)動(dòng)點(diǎn)C的直線VC垂直于☉O所在的平面,D,E分別是VA,VC的中點(diǎn),則下列結(jié)論中正確的是________(填寫(xiě)正確結(jié)論的序號(hào)).

(1)直線DE∥平面ABC.

(2)直線DE⊥平面VBC.

(3)DE⊥VB.

(4)DE⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A-,0),B0,-,其中k≠0k≠±1,直線l經(jīng)過(guò)點(diǎn)P(1,0)AB的中點(diǎn).

(1)求證:A,B關(guān)于直線l對(duì)稱(chēng).

(2)當(dāng)1<k<時(shí),求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案