已知函數(shù),
(Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.

(Ⅰ) ;(II) .

解析試題分析:(Ⅰ) 將兩切線平行,轉(zhuǎn)化為兩直線的斜率相等,借助導(dǎo)數(shù)的幾何意義建立等量關(guān)系;(II)該恒成立問(wèn)題可轉(zhuǎn)化為最值問(wèn)題.即只需找到上的最小值,使它的最小值大于或等于0即可.
試題解析:(I)當(dāng)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d6/4/1mw6n2.png" style="vertical-align:middle;" />,                         2分
若函數(shù)在點(diǎn)處的切線與函數(shù)在點(diǎn)
處的切線平行,
所以,解得         
此時(shí)在點(diǎn)處的切線為
在點(diǎn)處的切線為
所以                                                 4分
(II)若,都有
,
只要上的最小值大于等于0
                                             6分
的變化情況如下表:







0



極大值

                         &n

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是實(shí)數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱(chēng)在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點(diǎn)的開(kāi)區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,試探究的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)().
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;   
(Ⅱ)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間)上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若x=1時(shí)取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求上的最小值;
(3)若對(duì)任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知 函數(shù)
(1)已知任意三次函數(shù)的圖像為中心對(duì)稱(chēng)圖形,若本題中的函數(shù)圖像以為對(duì)稱(chēng)中心,求實(shí)數(shù)的值
(2)若,求函數(shù)在閉區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

同步練習(xí)冊(cè)答案