已知 函數(shù)
(1)已知任意三次函數(shù)的圖像為中心對稱圖形,若本題中的函數(shù)圖像以為對稱中心,求實(shí)數(shù)和的值
(2)若,求函數(shù)在閉區(qū)間上的最小值
(1),(2)
解析試題分析:解:(1)由函數(shù)圖像以為對稱中心,則,代入計(jì)算得:
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)(),其圖像在點(diǎn)(1,)處的切線方程為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè), 已知函數(shù)
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),,其中為實(shí)數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
己知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)的圖象在點(diǎn)處的切線斜率為.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
,故
則
(1)另解:由
則,則,故
則
(2)由
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5a/b/ojwfa.png" style="vertical-align:middle;" />,討論:
1. 若,如下表:
則此時(shí) 0
2. 若時(shí),如下表:1
年級
高中課程
年級
初中課程
高一
高一免費(fèi)課程推薦!
初一
初一免費(fèi)課程推薦!
高二
高二免費(fèi)課程推薦!
初二
初二免費(fèi)課程推薦!
高三
高三免費(fèi)課程推薦!
初三
初三免費(fèi)課程推薦!
(1)試問的值是否為定值?若是,求出該定值;若不是,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令.若不等式對且恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M (x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P (x0, g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求實(shí)數(shù)a的取值范圍.
(1)求,的值;
(2)求函數(shù)的單調(diào)區(qū)間和極值;
(3)求函數(shù)在區(qū)間[-2,5]上的最大值.
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.
(1)若在上是單調(diào)減函數(shù),且在上有最小值,求的取值范圍;
(2)若在上是單調(diào)增函數(shù),試求的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線的斜率為負(fù)數(shù)時(shí),求在x軸上截距的取值范圍.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷方程根的個(gè)數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號(hào): 滬ICP備07509807號(hào)-10 鄂公網(wǎng)安備42018502000812號(hào)