分析 利用參數(shù)分離法將不等式進(jìn)行轉(zhuǎn)化,利用基本不等式求出式子的最大值即可得到結(jié)論.
解答 解:∵x>0,y>0,
∴不等式$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$等價(jià)為a≥$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$恒成立,
設(shè)m=$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$,則m>0,
平方得m2=($\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$)2=$\frac{x+y+2\sqrt{xy}}{x+y}$=1+$\frac{2\sqrt{xy}}{x+y}$≤1+$\frac{2\sqrt{xy}}{2\sqrt{xy}}$=1+1=2,
當(dāng)且僅當(dāng)x=y時(shí)取等號(hào),
∴m2≤2,則0≤m≤$\sqrt{2}$
∴要使a≥$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$恒成立,
則a≥$\sqrt{2}$,
故答案為:[$\sqrt{2}$,+∞)
點(diǎn)評(píng) 本題主要考查不等式恒成立問(wèn)題,利用參數(shù)分離法以及基本不等式求出最值是解決本題的關(guān)鍵.綜合性較強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4n | B. | $\frac{1}{3}({4^n}-1)$ | C. | $\frac{4}{3}({4^n}-1)$ | D. | $\frac{1}{3}({4^n}+8)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 6 | C. | 9 | D. | $\frac{27}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “至少有1名女生”與“都是女生” | B. | “至少有1名女生”與“至多1名女生” | ||
C. | “恰有1名女生”與“恰有2名女生” | D. | “至少有1名男生”與“都是女生” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com