【題目】()直線過點(2,3),且當(dāng)傾斜角是直線的傾斜角的二倍時,求直線方程.
()當(dāng)與軸正半軸交于點、軸正半軸交于點,且的面積最小時,求直線方程.
【答案】(1) ;(2) .
【解析】試題分析:
(1)由題意可得題中直線的傾斜角為60°,據(jù)此利用點斜式可得所求直線的方程為.
(2)由題意求得面積函數(shù)的解析式,結(jié)合均值不等式的結(jié)論可得當(dāng)且僅當(dāng)時等式成立面積取得最小值,此時直線方程為.
試題解析:
()的斜率為,
即:傾斜角為,
∴,
∴,
即: .
()設(shè), ,
令, ,
令, ,
∴,
當(dāng)且僅當(dāng)時等式成立.
∴.
點睛:在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長交的延長線與點Q,連接QE交PA于點K,設(shè)QA=x,
由,得,則,所以.
取的中點為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點為,已知曲線: 與曲線: 交于不同的兩點, .
(1)求的值;
(2)求過點且與直線平行的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若,求證:函數(shù)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)在[1,e]上的最小值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一枚骰子擲一次得到2點的概率為,這說明一枚骰子擲6次會出現(xiàn)一次2點
B. 某地氣象臺預(yù)報說,明天本地降水的概率為70%,這說明明天本地有70%的區(qū)域下雨,30%的區(qū)域不下雨
C. 某中學(xué)高二年級有12個班,要從中選2個班參加活動,由于某種原因,一班必須參加,另外再從二至十二班中選一個班,有人提議用如下方法:擲兩枚骰子得到的點數(shù)是幾,就選幾班,這是很公平的方法
D. 在一場乒乓球賽前,裁判一般用擲硬幣猜正反面來決定誰先打球,這應(yīng)該說是公平的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是直角梯形,,,,,又,,,直線與直線所成的角為.
(1)求證:平面平面;
(2)(文科)求三棱錐的體積.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:
資源 消耗量 產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤() | 9 | 4 | 360 |
電力() | 4 | 5 | 200 |
勞力(個) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.點E是CD邊的中點,點F,G分別在線段AB,BC上,且AF=2FB,CG=2GB.
(1)證明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直線PA與直線FG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)=(x+l)lnx﹣ax+a (a為正實數(shù),且為常數(shù))
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為 1, 為的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).
①當(dāng)時, 為四邊形;②當(dāng)時, 為等腰梯形;③當(dāng)時, 為六邊形;④當(dāng)時, 的面積為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com