關(guān)于x的一元二次不等式x2-(a+1)x+a<0的解集為A,集合B={x|x(x-2)<0}且A∩B=A,求實數(shù)a的取值范圍.
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:不等式的解法及應(yīng)用,集合
分析:先解出B=(0,2),原一元二次不等式變成(x-1)(x-a)<0,討論a和1的關(guān)系,從而求出A,再根據(jù)A∩B=A可求出a的取值范圍.
解答: 解:B=(0,2),x2-(a+1)x+a=(x-1)(x-a)<0;
若a<1,A=(a,1),∵A∩B=A,∴a≥0,即0≤a<1;
若a=1,A=∅,滿足A∩B=A;
若a>1,A=(1,a),∵A∩B=A,∴a≤2,即1<a≤2;
∴a的取值范圍是[0,2].
點評:考查解一元二次不等式的方法,交集的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log0.50.9,b=log1.10.9,c=1.10.9,則a,b,c的大小關(guān)系為( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記關(guān)于x的不等式lg(x-6)<1的解集為P,不等式|x-a|≤1的解集為Q.若Q⊆P,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax(a>0).
(1)求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實數(shù)a的最小值;
(3)在第(2)題的條件下,又?x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+bx+c的圖象為曲線E.
(1)若曲線E上存在點P,使曲線E在P點處的切線與x軸平行,求a,b的關(guān)系;
(2)若函數(shù)f(x)可以在x=-1和x=3時取得極值,求此時a,b的值;
(3)在滿足(2)的條件下,設(shè)x1,x2∈[-2,6],求證:|f(x1)-f(x2)|≤81恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-ln(1-x)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求使f(x)>1的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB>1,點E在棱AB上移動,小螞蟻從點A沿長方體的表面爬到點C1,所爬的最短路程為2
2

(1)求AB的長度.
(2)求該長方體外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)(-0.8)0+(1.5)-2×(3
3
8
 
2
3
+9 
3
2
; 
(2)lg4+lg9+2
(lg6)2-2lg6+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=
1
4
,且2an=2an-1+1(n≥2,n∈N*).?dāng)?shù)列{bn}滿足b1=
3
4
,且3bn-bn-1=n(n≥2,n∈N*).
(1)求證:數(shù)列{bn-an}是等比數(shù)列;
(2)求數(shù)列{bn}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案