【題目】已知函數(shù)f(x)=lnx﹣ax+ (a∈R).
(1)當a=﹣ 時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)+a(x﹣1)有兩個零點x1 , x2 , 且x1<x2 , 求證:x1+x2>1.

【答案】
(1)解:當a=﹣ 時,f(x)=lnx+ x+ ,(x>0),求導,f′(x)= + = ,

令f′(x)=0,解得:x= 或x=﹣1(舍去),

當f′(x)>0,解得:x> ,

當f′(x)<0,解得:0<x<

∴函數(shù)的單調(diào)遞增區(qū)間為( ,+∞),單調(diào)遞減區(qū)間為(0, ),

∴當x= 時,函數(shù)取極小值,極小值為2﹣ln3;


(2)證明:根據(jù)題意,g(x)=f(x)+a(x﹣1)=lnx+ ﹣a,(x>0),

因為x1,x2是函數(shù)g(x)的兩個零點,

∴l(xiāng)nx1+ ﹣a=0,lnx2+ ﹣a=0,

兩式相減,可得ln = ,

即ln = ,故x1x2=

那么x1= ,x2=

令t= ,其中0<t<1,

則x1+x2= + =

構(gòu)造函數(shù)h(t)=t﹣ ﹣2lnt,(0<t<1),

則h′(t)= ,

∵0<t<1,h′(t)>0恒成立,

故h(t)<h(1),即t﹣ ﹣2lnt<0,

>1,故x1+x2>1.


【解析】(1)當a=﹣ 時,求導,令f′(x)>0求得函數(shù)的單調(diào)遞增區(qū)間,f′(x)<0即可求得函數(shù)的單調(diào)遞減區(qū)間,即當x= 時,f(x)取極值;(2)求出個零點x1,x2,得到x1+x2= + = .構(gòu)造函數(shù)h(t)=t﹣ ﹣2lnt,(0<t<1),根據(jù)函數(shù)的單調(diào)性證明即可.
【考點精析】利用函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖莖葉圖記錄了甲,乙兩班各六名同學一周的課外閱讀時間(單位:小時),已知甲班數(shù)據(jù)的平均數(shù)為13,乙班數(shù)據(jù)的中位數(shù)為17,那么x的位置應填;y的位置應填

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大。
(Ⅱ)當a≥﹣1時,若函數(shù)f(x)的圖象和x軸圍成一個三角形,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+b)+ex﹣1(a≠0).
(1)當a=﹣1,b=1時,判斷函數(shù)f(x)的零點個數(shù);
(2)若f(x)≤ex﹣1+x+1,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)新建了一個休閑小公園,幾條小徑將公園分成5塊區(qū)域,如圖,社區(qū)準備從4種顏色不同的花卉中選擇若干種種植在各塊區(qū)域,要求每個區(qū)域隨機用一種顏色的花卉,且相鄰區(qū)域(用公共邊的)所選花卉顏色不能相同,則不同種植方法的種數(shù)共有(
A.96
B.114
C.168
D.240

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.01則輸出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,若存在 同時滿足以下條件:①對任意的 ,都有 成立;② ,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= . (I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若不等式f(x)> 恒成立,求整數(shù)k的最大值;
(III)求證:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).

查看答案和解析>>

同步練習冊答案