【題目】如圖所示,四棱柱中,底面是以為底邊的等腰梯形,且.
(I)求證:平面平面;
(Ⅱ)若,求直線AB與平面所成角的正弦值.
【答案】(I)證明見解析;(Ⅱ).
【解析】
(Ⅰ)要證明平面平面,只需證明平面即可;
(Ⅱ)取BD的中點O,易得面ABCD,以O為原點,分別以為的非負半軸建立空間直角坐標系,計算平面的法向量為與,再利用公式計算即可.
(Ⅰ)中,,,,由余弦定理得
,
則,即,
而,故平面,
又面ABCD,所以平面平面ABCD.
(Ⅱ)取BD的中點O,由于,所以,
由(Ⅰ)可知平面面ABCD,故面ABCD.
由等腰梯形知識可得,則,,
以O為原點,分別以為的非負半軸建立空間直角坐標系,
則,
則
設(shè)平面的法向量為,則,
令,則,有,
所以,,
即直線AB與平面所成角的正弦值為.
【點晴】
本題考查面面垂直的證明、向量法求線面角,考查學生的數(shù)學運算能力,是一道中檔題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點,點為橢圓上的一動點,面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點為,點,證明:直線與直線關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為,且在極坐標下點P.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)若曲線C1與曲線C2交于A,B兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,其中.
(1)若滿足.
①當,且時,求的值;
②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值.
(2)設(shè)數(shù)列的前項和為,數(shù)列的前n項和為,,,若,,且恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,過點的兩條不同的直線與橢圓E分別相交于A,B和C,D四點,其中A為橢圓E的右頂點.
(1)求以AB為直徑的圓的方程;
(2)設(shè)以AB為直徑的圓和以CD為直徑的圓相交于M,N兩點,探究直線MN是否經(jīng)過定點,若經(jīng)過定點,求出定點坐標;若不經(jīng)過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖所示的三棱錐D﹣ABC的四個頂點均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,則球O的表面積為( )
A.4π B.12π C.16π D.36π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關(guān)指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結(jié)果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數(shù)總共為次.某定點醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設(shè)在接受檢驗的血液樣本中,每份樣本檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為.
(Ⅰ)求把2份血液樣本混合檢驗結(jié)果為陽性的概率;
(Ⅱ)若檢驗次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)與兩定點,連線的斜率之積等于的點的軌跡,加上、兩點所成的曲線為.若曲線與軸的正半軸的交點為,且曲線上的相異兩點、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com