【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

【答案】A
【解析】解:由題意可得:

存在x0∈(﹣∞,0),滿足x02+ex0 =(﹣x02+ln(﹣x0+a),

即ex0 ﹣ln(﹣x0+a)=0有負根,

∵當x趨近于負無窮大時,ex0 ﹣ln(﹣x0+a)也趨近于負無窮大,

且函數(shù)h(x)=ex ﹣ln(﹣x+a)為增函數(shù),

∴h(0)=e0 ﹣lna>0,

∴l(xiāng)na<ln ,

∴a<

∴a的取值范圍是(﹣∞, ),

故選:A

【考點精析】掌握函數(shù)的圖象是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某港口的水深y(米)是時間t(0≤t≤24,單位:小時)的函數(shù),下面是每天時間與水深的關(guān)系表:

t

0

3

6

9

12

15

18

21

24

y

10

13

9.9

7

10

13

10.1

7

10

經(jīng)過長期觀測,y=f(t)可近似的看成是函數(shù)y=Asinωt+b
(1)根據(jù)以上數(shù)據(jù),求出y=f(t)的解析式;
(2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長都相等的四面體PABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結(jié)論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(m2m-1)x-5m-3 , m為何值時,f(x):
(1)是冪函數(shù);
(2)是正比例函數(shù);
(3)是反比例函數(shù);
(4)是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A、B、C的對邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知θ∈( ,π), + =2 ,則cos(2θ+ )的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一圓心角為 ,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動點且劣弧 的長為2πcm,過P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數(shù),并求出其最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于x的不等式:(x﹣1)(x+a)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的函數(shù),滿足f(x)=f(4﹣x),且對任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,則滿足f(2﹣x)=f( )的所有x的和為(
A.﹣3
B.﹣5
C.﹣8
D.8

查看答案和解析>>

同步練習冊答案