根據(jù)如下樣本數(shù)據(jù):
x345678
y42.5-0.50.5-2-3
得到的回歸方程為
?
y
=
?
b
x+
?
a
,則( 。
A、
?
a
>0,
?
b
<0
B、
?
a
>0,
?
b
>0
C、
?
a
<0,
?
b
>0
D、
?
a
<0,
?
b
<0
考點:線性回歸方程
專題:概率與統(tǒng)計
分析:利用公式求出
?
b
?
a
,即可得出結(jié)論.
解答: 解:樣本平均數(shù)
.
x
=5.5,
.
y
=0.25,
6
i=1
(xi-
.
x
)(yi-
.
y
)=-24.5,
6
i=1
(xi-
.
x
2=17.5,
?
b
=-
24.5
17.5
=-1.4,
?
a
=0.25-(-1.4)•5.5=7.95,
故選:A
點評:本題考查線性回歸方程的求法,考查最小二乘法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos40°+cos60°+cos80°+cos160°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(
6
,
2
)在橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)上,且橢圓的離心率為
6
3

(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點,以AB為底做等腰三角形,頂點為P(-3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從4名男生和2名女生中任選3人參加演講比賽,所選3人中至少有1名女生的概率為
4
5
,那么所選3人都是男生的概率為( 。
A、
1
5
B、
3
5
C、
2
5
D、
1
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(mx2,
1-cos2x
2
+(2cos2
x
2
-1)2),
b
=(
1
mx-1
,-x)(m是常數(shù)).
(1)若f(x)=
1
a
b
是定義域內(nèi)的奇函數(shù),求m的值;
(2)若f(x)>0,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)與曲線x2+y2=a2-b2恒有公共點,則橢圓離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體ABCD中,AB⊥面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F(xiàn)分別是AC,AD的中點,分別求出面BEF與面ABC的法向量,并據(jù)此說明平面BEF與平面ABC的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題:
①“a>b”是“a2>b2”的充分條件;
②?x0∈R,x02+2x0+2≤0”的否定是“?x∈R,x2+2x+2>0”;
③若“p∧q”為假命題,則p,q均為假命題;
④若“p∨q”為真命題,則p,q中至少一個是真命題.
其中正確的命題序號是( 。
A、①②B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2x上有一點P,P點的橫坐標(biāo)x=2,則P到拋物線的焦點的距離為
 

查看答案和解析>>

同步練習(xí)冊答案