已知,
(1)當時,解不等式;
(2)若,解關于的不等式

(1)(2)

解析試題分析:(I)當時,有不等式,
,∴不等式的解為:
(II)∵不等式
時,有,∴不等式的解集為;
考點:一元二次不等式的解法
點評:解一元二次不等式時要結合與之對應的二次方程找到解的邊界值,結合與之對應的二次函數(shù)確定范圍,當有參數(shù)時要注意不同的參數(shù)范圍解集是不同的

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

養(yǎng)路處建造無底的圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12米,高4米。養(yǎng)路處擬另建一個更大的圓錐形倉庫,以存放更多食鹽,F(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來增加4米(高不變);二是高度增加4米(底面直徑不變)。
分別計算按這兩種方案所建的倉庫的體積;
分別計算按這兩種方案所建的倉庫的表面積;
哪個方案更經濟些?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設,每年用于改造生態(tài)環(huán)境總費用為億元,其中用于風景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時具備下列三個條件:①每年用于風景區(qū)改造費用隨每年改造生態(tài)環(huán)境總費用增加而增加;②每年改造生態(tài)環(huán)境總費用至少億元,至多億元;③每年用于風景區(qū)改造費用不得低于每年改造生態(tài)環(huán)境總費用的15%,但不得每年改造生態(tài)環(huán)境總費用的22%。
(1)若,,請你分析能否采用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案;
(2)若、取正整數(shù),并用函數(shù)模型y作為生態(tài)環(huán)境改造投資方案,請你求出、的取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量函數(shù)
(Ⅰ)求的單調增區(qū)間;
(Ⅱ)若時,的最大值為4,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設p;函數(shù)上是增函數(shù),q:函數(shù)的定義域為R.
(1)若,試判斷命題p的真假;
(2)若命題p與命題q一真一假,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位決定對本單位職工實行年醫(yī)療費用報銷制度,擬制定年醫(yī)療總費用在2萬元至10萬元(包括2萬元和10萬元)的報銷方案,該方案要求同時具備下列三個條件:①報銷的醫(yī)療費用y(萬元)隨醫(yī)療總費用x(萬元)增加而增加;②報銷的醫(yī)療費用不得低于醫(yī)療總費用的50%;③報銷的醫(yī)療費用不得超過8萬元.
(1)請你分析該單位能否采用函數(shù)模型y=0.05(x2+4x+8)作為報銷方案;
(2)若該單位決定采用函數(shù)模型y=x-2lnx+a(a為常數(shù))作為報銷方案,請你確定整數(shù)的值.(參考數(shù)據(jù):ln2»0.69,ln10»2.3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù)。
(I)記的表達式;
(II)是否存在,使函數(shù)在區(qū)間內的圖像上存在兩點,在該兩點處的切線相互垂直?若存在,求的取值范圍;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案