“m=2”是“函數(shù)f(x)=x-m在區(qū)間[2,+∞)上為增函數(shù)”的
 
條件.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:函數(shù)f(x)=x-m在區(qū)間[2,+∞)上為增函數(shù),則m∈R,
則“m=2”是“函數(shù)f(x)=x-m在區(qū)間[2,+∞)上為增函數(shù)”的充分不必要條件,
故答案為:充分不必要
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:-2≤
4-x
3
≤2,q:(x-1-m)(x-1+m)≤0,(m>0).¬p是¬q的必要不充分條件,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,2),
a
+
b
=(0,2),則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從0,1,2,3,4,5,6,7,8,9中任取3個(gè)不同的數(shù),則這3個(gè)數(shù)的平均數(shù)是6的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
a
,
b
,
c
為平面向量
(1)若
a
b
=
a
c
,則
b
=
c

(2)若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
(3)非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
(4)已知函數(shù)f(x)=Acos(ωx+φ)的圖象如圖所示,f(
π
2
)=-
2
3
,則f(0)=
2
3

其中真命題的序號(hào)為
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C過(guò)點(diǎn)(-1,0),且圓心在x軸的負(fù)半軸上,直線l:y=x+1被該圓所截得的弦長(zhǎng)為2
2
,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,則這個(gè)幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={1,2,3,5},當(dāng)x∈A時(shí),若x-1∉A且x+1∉A,則稱x為A的一個(gè)“孤立元素”,則A中孤立元素的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3-x2+x的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案