18.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)圖象的一個(gè)對(duì)稱中心為($\frac{π}{12}$,0),且圖象上相鄰兩條對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)減區(qū)間;
(3)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos(α+$\frac{3π}{2}$)的值.

分析 (1)由題意和三角函數(shù)圖象特點(diǎn)可得周期,可得ω=2,代點(diǎn)計(jì)算可得φ=-$\frac{π}{6}$,可得解析式為f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$);
(2)根據(jù)正弦函數(shù)的單調(diào)性得到關(guān)于x的不等式,解出即可;
(3)由題意可得sin(α-$\frac{π}{6}$)=$\frac{1}{4}$,由同角三角函數(shù)基本關(guān)系可得cos(α-$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$,代入cos(α+$\frac{3π}{2}$)=sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=$\frac{\sqrt{3}}{2}$sin(α-$\frac{π}{6}$)+$\frac{1}{2}$cos(α-$\frac{π}{6}$)計(jì)算可得.

解答 解:(1)∵函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)圖象的一個(gè)對(duì)稱中心為($\frac{π}{12}$,0),
∴$\sqrt{3}$sin($\frac{π}{12}$ω+φ)=0,又圖象上相鄰兩條對(duì)稱軸間的距離為$\frac{π}{2}$,
∴周期T滿足T=$\frac{2π}{ω}$=2×$\frac{π}{2}$,解得ω=2,∴$\sqrt{3}$sin($\frac{π}{6}$+φ)=0,
結(jié)合-$\frac{π}{2}$≤φ<$\frac{π}{2}$可得φ=-$\frac{π}{6}$,故f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$);
(2)由f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$),
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
解得:kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
故函數(shù)f(x)的遞減區(qū)間是:[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$];
(3)∵f($\frac{α}{2}$)=$\sqrt{3}$sin(α-$\frac{π}{6}$)=$\frac{\sqrt{3}}{4}$,∴sin(α-$\frac{π}{6}$)=$\frac{1}{4}$,
又$\frac{π}{6}$<α<$\frac{2π}{3}$,∴0<α-$\frac{π}{6}$<$\frac{π}{2}$,故cos(α-$\frac{π}{6}$)=$\frac{\sqrt{15}}{4}$,
∴cos(α+$\frac{3π}{2}$)=sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]
=$\frac{\sqrt{3}}{2}$sin(α-$\frac{π}{6}$)+$\frac{1}{2}$cos(α-$\frac{π}{6}$)
=$\frac{\sqrt{3}}{2}$×$\frac{1}{4}$+$\frac{1}{2}$×$\frac{\sqrt{15}}{4}$=$\frac{\sqrt{3}+\sqrt{15}}{8}$.

點(diǎn)評(píng) 本題考查三角函數(shù)解析式的求解和三角函數(shù)公式,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.P為△OAB內(nèi)一點(diǎn),$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則(x,y)有可能是( 。
A.$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$B.(1,1)C.$({\frac{1}{5},\frac{2}{5}})$D.$({-\frac{1}{2},-\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中點(diǎn),將△ADE與△BEC分別沿ED,EC向上折起,使A,B重合于點(diǎn)P,若三棱錐P-CDE的各個(gè)頂點(diǎn)在同一球面上,則該球的表面積為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}π}{2}$C.$\frac{\sqrt{6}π}{8}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ax2-4ax+b(a>0)在區(qū)間[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若在區(qū)間[-1,1]上,不等式f(x)>-x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)的定義域?yàn)閇a,b],在同一坐標(biāo)系下,函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)個(gè)數(shù)為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程.
(1)與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1有公共焦點(diǎn),且離心率為2的雙曲線;
(2)中心在坐標(biāo)原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=$\frac{ax+b}{1+{x}^{2}}$(a,b為常數(shù))是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{4}{5}$.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.過(guò)點(diǎn)P(2,1)作直線l交x軸、y軸的正半軸于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)△AOB的面積為$\frac{9}{2}$時(shí),求直線l的方程;
(2)當(dāng)△AOB的面積最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)$f(x)={2^{\frac{1}{x}}}(\frac{1}{2}≤x≤1)$的值域是( 。
A.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$B.$[\frac{{\sqrt{2}}}{2},2]$C.(0,2]D.[2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案