【題目】已知向量 , , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是( )
A.
B.
C.
D.
【答案】B
【解析】解:根據(jù)題意,向量 , , =(3m+n,m﹣3n),
則 = = ,
令t= ,則 = t,
而m+n∈[1,2],即1≤m+n≤2,在直角坐標(biāo)系表示如圖,
t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,
分析可得: ≤t<2,
又由 = t,
故 ≤ <2 ;
故選:B.
根據(jù)題意,由向量的坐標(biāo)運(yùn)算公式可得 =(3m+n,m﹣3n),再由向量模的計(jì)算公式可得 = ,可以令t= ,將m+n∈[1,2]的關(guān)系在直角坐標(biāo)系表示出來(lái),分析可得t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,進(jìn)而可得t的取值范圍,又由 = t,分析可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問(wèn)如何圍可使竹籬笆用料最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點(diǎn)M,使得A1M⊥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=( )
A.9
B.15
C.18
D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,且.
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)若記為滿足不等式的正整數(shù)的個(gè)數(shù),設(shè),求數(shù)列的最大項(xiàng)與最小項(xiàng)的值.
【答案】(1)見(jiàn)解析;(2)最大項(xiàng)為,最小項(xiàng)為.
【解析】試題分析:(Ⅰ)對(duì)兩邊取倒數(shù),移項(xiàng)即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當(dāng)為奇數(shù)時(shí),單調(diào)遞減,;當(dāng)為偶數(shù)時(shí)單調(diào)遞增,綜上的最大項(xiàng)為,最小項(xiàng)為.
試題解析:(Ⅰ)由于,,則
∴,則,即為常數(shù)
又,∴數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列
從而,即.
(Ⅱ)由即,得,
又,從而
故
當(dāng)為奇數(shù)時(shí),,單調(diào)遞減,;
當(dāng)為偶數(shù)時(shí),,單調(diào)遞增,
綜上的最大項(xiàng)為,最小項(xiàng)為.
【題型】解答題
【結(jié)束】
22
【題目】已知向量, ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.
(Ⅰ)求的解析式;
(Ⅱ)若關(guān)于的方程在有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是長(zhǎng)軸長(zhǎng)為 的橢圓Q: 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為 .
(1)求橢圓Q的方程;
(2)設(shè)過(guò)左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無(wú)零點(diǎn),求a最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com