【題目】已知函數(shù)

1)當時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

【答案】1;(2

【解析】試題分析:(1)分 , 三種情況解不等式;(2)的解集包含,等價于當,所以,從而可得

試題解析:(1)當時,不等式等價于.①

時,①式化為,無解;

時,①式化為,從而;

時,①式化為,從而.

所以的解集為.

(2)當時, .

所以的解集包含,等價于當.

的學科&網(wǎng)最小值必為之一,所以,得.

所以的取值范圍為.

點睛:形如 ()型的不等式主要有兩種解法:

(1)分段討論法:利用絕對值號內(nèi)式子對應(yīng)方程的根,將數(shù)軸分為, , (此處設(shè))三個部分,將每部分去掉絕對值號并分別列出對應(yīng)的不等式求解,然后取各個不等式解集的并集.

(2)圖像法:作出函數(shù)的圖像,結(jié)合圖像求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面ABCD為梯形,,則在面PBC內(nèi)  

A. 一定存在與CD平行的直線

B. 一定存在與AD平行的直線

C. 一定存在與AD垂直的直線

D. 不存在與CD垂直的直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)兩種元件,其質(zhì)量按測試指標劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機抽取這兩種元件各件進行檢測,檢測結(jié)果記錄如下:







B






由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計員只記得,且兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.

1)求表格中的值;

2)從被檢測的種元件中任取件,求件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一條動直線3(m+1)x+(m-1)y-6m-2=0,

1)求證:直線恒過定點,并求出定點P的坐標;

2)若直線與x、y軸的正半軸分別交于A,B兩點,O為坐標原點,是否存在直線滿足下列條件:①AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請說明理由.

3)若直線與x、y軸的正半軸分別交于A,B兩點,當取最小值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的長軸長為,過點的直線軸垂直,橢圓的離心率, 為橢圓的左焦點,.

求此橢圓的方程;

設(shè)是此橢圓上異于的任意一點, , 為垂足,延長到點使得.連接并延長,交直線于點的中點,判定直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個不同交點,DM,N之間的最高點且橫坐標為,點是線段DM的中點.

1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;

2)若時,函數(shù)的最小值為,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

1)若,函數(shù)的極大值為,求實數(shù)的值;

2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:

分數(shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù)a,bc,給出下列命題:

①“”是“”的充要條件

②“是無理數(shù)”是“a是無理數(shù)”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案