【題目】已知函數(shù), .
(1)當時,求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)分, , 三種情況解不等式;(2)的解集包含,等價于當時,所以且,從而可得.
試題解析:(1)當時,不等式等價于.①
當時,①式化為,無解;
當時,①式化為,從而;
當時,①式化為,從而.
所以的解集為.
(2)當時, .
所以的解集包含,等價于當時.
又在的學科&網(wǎng)最小值必為與之一,所以且,得.
所以的取值范圍為.
點睛:形如 (或)型的不等式主要有兩種解法:
(1)分段討論法:利用絕對值號內(nèi)式子對應(yīng)方程的根,將數(shù)軸分為, , (此處設(shè))三個部分,將每部分去掉絕對值號并分別列出對應(yīng)的不等式求解,然后取各個不等式解集的并集.
(2)圖像法:作出函數(shù)和的圖像,結(jié)合圖像求解.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面ABCD為梯形,,則在面PBC內(nèi)
A. 一定存在與CD平行的直線
B. 一定存在與AD平行的直線
C. 一定存在與AD垂直的直線
D. 不存在與CD垂直的直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)、兩種元件,其質(zhì)量按測試指標劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機抽取這兩種元件各件進行檢測,檢測結(jié)果記錄如下:
B |
由于表格被污損,數(shù)據(jù)、看不清,統(tǒng)計員只記得,且、兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.
(1)求表格中與的值;
(2)從被檢測的件種元件中任取件,求件都為正品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一條動直線3(m+1)x+(m-1)y-6m-2=0,
(1)求證:直線恒過定點,并求出定點P的坐標;
(2)若直線與x、y軸的正半軸分別交于A,B兩點,O為坐標原點,是否存在直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請說明理由.
(3)若直線與x、y軸的正半軸分別交于A,B兩點,當取最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的長軸長為,過點的直線與軸垂直,橢圓的離心率, 為橢圓的左焦點,且.
(Ⅰ)求此橢圓的方程;
(Ⅱ)設(shè)是此橢圓上異于的任意一點, 軸, 為垂足,延長到點使得.連接并延長,交直線于點為的中點,判定直線與以為直徑的圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個不同交點,D是M,N之間的最高點且橫坐標為,點是線段DM的中點.
(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;
(2)若時,函數(shù)的最小值為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若,函數(shù)的極大值為,求實數(shù)的值;
(2)若對任意的, ,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:
分數(shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意實數(shù)a,b,c,給出下列命題:
①“”是“”的充要條件
②“是無理數(shù)”是“a是無理數(shù)”的充要條件;
③“”是“”的充分不必要條件
④“”是“”的必要不充分條件,
其中真命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com