分析 (I)聯立直線與拋物線方程,求出A,B兩點坐標,代入兩點之間距離公式,可得答案;
(Ⅱ)若拋物線C上一點P到準線的距離為$\frac{5}{4}$,則點P的橫坐標x滿足x+$\frac{1}{4}$=$\frac{5}{4}$,解得答案.
解答 解:(I)聯立直線與拋物線方程得:$\left\{\begin{array}{l}y=x-2\\{y}^{2}=x\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=4\\ y=2\end{array}\right.$,或$\left\{\begin{array}{l}x=1\\ y=-1\end{array}\right.$,
故線段AB的長為:$\sqrt{(4-1)^{2}+(2+1)^{2}}$=3$\sqrt{2}$;
(Ⅱ)若拋物線C上一點P到準線x=-$\frac{1}{4}$的距離為$\frac{5}{4}$,
則P點的橫坐標x滿足x+$\frac{1}{4}$=$\frac{5}{4}$,
即x=1,則y=±1,
故P點的坐標為(1,1)或(1,-1)
點評 本題考查拋物線的定義、標準方程,以及簡單性質的應用,熟練掌握拋物線的性質,是解題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | (4,2) | B. | (-4,2) | C. | (4,2)或(-4,2) | D. | (2,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2x-$\frac{π}{4}$,$\frac{1}{2π}$ | B. | -$\frac{π}{4}$,$\frac{1}{2π}$ | C. | 2x-$\frac{π}{4}$,$\frac{1}{π}$ | D. | -$\frac{π}{4}$,$\frac{1}{π}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(2${\;}^{\frac{1}{8}}$)>f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$)) | B. | f(($\frac{1}{8}$)2)>f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$)) | ||
C. | f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))>f(($\frac{1}{8}$)2) | D. | f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$))>f(2${\;}^{\frac{1}{8}}$) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com