已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)(1,0)的距離與到定直線L:x=-1的距離相等,
(1)求曲線C的方程;
(2)直線m過(-2,1),斜率為k,k為何值時(shí),直線m與曲線C只有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn);沒有公共點(diǎn)?
(1)由拋物線的定義可知?jiǎng)狱c(diǎn)P的軌跡是拋物線:y2=4x.
(2)設(shè)直線m的方程為y-1=k(x+2),聯(lián)立
y-1=k(x+2)
y2=4x

化為k2x2+(4k2+2k-4)x+4k2+4k+1=0.
①當(dāng)k=0時(shí),直線mx軸,直線與拋物線只有一個(gè)交點(diǎn),滿足題意;
②當(dāng)k≠0時(shí),若直線與m相切時(shí),直線m與拋物線有且只有一個(gè)公共點(diǎn),此時(shí)△=0,化為2k2+k-1=0,解得k=-1或k=
1
2

當(dāng)直線m與拋物線相交時(shí),線m與拋物線有兩個(gè)公共點(diǎn),此時(shí)△>0,化為2k2+k-1<0,解得-1<k<
1
2
.(k≠0).
當(dāng)△<0,直線m與拋物線沒有公共點(diǎn),由△<0化為2k2+k-1>0,解得k>
1
2
或k<-1.
綜上可知:當(dāng)k=0或k=-1或k=
1
2
時(shí),直線與拋物線只有一個(gè)公共點(diǎn);
當(dāng)-1<k<
1
2
且k≠0時(shí),直線與拋物線有兩個(gè)公共點(diǎn);
當(dāng)k>
1
2
或k<-1時(shí),直線m與拋物線沒有公共點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過x軸上動(dòng)點(diǎn)A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1和k2,求證:k1•k2為定值,并求出定值;
(2)求證:直線PQ恒過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(3)當(dāng)
S△APO
PQ
最小時(shí),求
AQ
AP
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為-
1
4
,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求
S
|k|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將圓p:x2+y2=4上任意一點(diǎn)P′的縱坐標(biāo)變?yōu)樵瓉淼囊话耄M坐標(biāo)不變),得到點(diǎn)P,并設(shè)點(diǎn)P的軌跡為曲線C.
(1)求C的方程;
(2)設(shè)o為坐標(biāo)原點(diǎn),過點(diǎn)Q(
3
,0)的直線l與曲線C交于兩點(diǎn)A,B,線段AB的中點(diǎn)為N,且
OE
=2
ON
,點(diǎn)E在曲線C上,求直線l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A、B是橢圓的左、右頂點(diǎn),P是橢圓上不同于A、B的一點(diǎn),直線PA、PB斜傾角分別為α、β,則
cos(α-β)
cos(α+β)
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1
交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C:y2=4x焦點(diǎn)為F,直線l經(jīng)過點(diǎn)F且與拋物線C相交于A,B兩點(diǎn)
(Ⅰ)若線段AB的中點(diǎn)在直線y=1上,求直線l的方程;
(Ⅱ)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,設(shè)點(diǎn)F坐標(biāo)為(1,0),點(diǎn)P在y軸上運(yùn)動(dòng),點(diǎn)M在x軸運(yùn)動(dòng)上,其中
PM
PF
=0,若動(dòng)點(diǎn)N滿足條件
PN
=
MP

(Ⅰ)求動(dòng)點(diǎn)N的軌跡E的方程;
(Ⅱ)過點(diǎn)F(1,0)的直線l和l′分別與曲線E交于A、B兩點(diǎn)和C、D兩點(diǎn),若l⊥l′,試求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C:x2+y2-2x+4y-4=0,
(Ⅰ)若過定點(diǎn)(-2,0)的直線l與圓C相切,求直線l的方程;
(Ⅱ)若過定點(diǎn)(-1,0)且傾斜角為
π
6
的直線l與圓C相交于A,B兩點(diǎn),求線段AB的中點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案