【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣月平均相對(duì)濕度過大或過小時(shí),都有利于一些病毒繁殖和傳播,科學(xué)測(cè)定,當(dāng)空氣月平均相對(duì)濕度大于65010或小于時(shí),有利于病毒繁殖和傳播.下表記錄了某年甲、乙兩個(gè)城市12個(gè)月的空氣月平均相對(duì)濕度.

第一季度

第二季度

第三季度

第四季度

1

2

3

4

5

6

7

8

9

10

11

12

甲地

乙地

(I)從上表12個(gè)月中,隨機(jī)取出1個(gè)月,求該月甲地空氣月平均相對(duì)濕度有利于病毒繁殖和傳播的概率;

(Ⅱ)從上表第一季度和第二季度的6個(gè)月中隨機(jī)取出2個(gè)月,記這2個(gè)月中甲、乙兩地空氣月平均相對(duì)濕度都有利于病毒繁殖和傳播的月份的個(gè)數(shù)為,求的分布列;

(Ⅲ)若,設(shè)乙地上表12個(gè)月的空氣月平均相對(duì)濕度的中位數(shù)為,求的最大值和最小值.(只需寫出結(jié)論)

【答案】;(分布列見解析;(, .

【解析】試題分析:(1)總事件數(shù)為12,再根據(jù)所求事件所需滿足的條件確定6個(gè)基本事件,最后根據(jù)古典概型概率公式求概率,(2)先確定隨機(jī)變量的取法,再根據(jù)組合數(shù)求對(duì)應(yīng)概率,列表可得分布列,(3)根據(jù)中位數(shù)定義,估計(jì)a,b極端位置,確定中位數(shù)最大值與最小值.

試題解析:設(shè)事件從上表12個(gè)月中,隨機(jī)取出1個(gè)月,該月甲地空氣月平均相對(duì)濕度有利于病毒繁殖和傳播.表示事件抽取的月份為第月,則

12個(gè)基本事件,

6個(gè)基本事件,

所以, .

Ⅱ)在第一季度和第二季度的6個(gè)月中,甲、乙兩地空氣月平均相對(duì)濕度都有利于病毒繁殖和傳播的月份只有2月和6月,故所有可能的取值為, , .

,

隨機(jī)變量的分布列為

0

1

2

的最大值為,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】”是“直線與直線平行”的( )

A. 充分而不必要條件B. 必要而充分不條件

C. 充要條件D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點(diǎn),已知,

求證(1)直線平面;

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2017年招聘員工,其中五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到如下:

崗位

男性應(yīng)聘人數(shù)

男性錄用人數(shù)

男性錄用比例

女性應(yīng)聘人數(shù)

女性錄用人數(shù)

女性錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望

表中各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫出這四種崗位.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正三棱柱ABC-A1B1C1中,已知D,E分別為BC,B1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EFC1D.求證:

1)直線A1E∥平面ADC1

2)直線EF⊥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,平面⊥平面, , ,

(Ⅰ)求證: ⊥平面;

(Ⅱ)求證:

(Ⅲ)若點(diǎn)在棱上,且平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,,.

(Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測(cè)當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1,第2,第3,第4 ,第5,得到的頻率分布直方圖如圖所示

(1) 求的值

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再從這人中隨機(jī)抽取人進(jìn)行問卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;

(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①集合{x∈N|x3=x}用列舉法表示為{-1,0,1};

②實(shí)數(shù)集可以表示為{x|x為所有實(shí)數(shù)}或{R};

③方程組的解集為{x=1,y=2}.

其中正確的有(  )

A.3個(gè)B.2個(gè)

C.1個(gè)D.0個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案