某學校甲、乙兩位學生參加數(shù)學競賽的培訓,在培訓期間,他們參加5次預賽,成績記錄如下:
82 82 79 95 87
95 75 80 90 85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從甲、乙兩人中選派一人參加數(shù)學競賽,從統(tǒng)計學的角度考慮,你認為選派哪位學生參賽更合適?并說明理由.
考點:莖葉圖,極差、方差與標準差
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)莖葉圖的定義即可用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)分別計算甲乙的平均數(shù)和方差,即可得到結(jié)論.
解答: 解:(1)作出的莖葉圖如下:
                        

(2)派甲參賽比較合適.理由如下:
.
x
=
1
5
(82+82+79+95+87)=85,
.
x
=
1
5
(95+75+80+90+85)=85,
s
2
=
1
5
[(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2=31.6,
s
2
=
1
5
[(75-85)2+(80-85)2+(85-85)2+(90-85)2+(95-85)2=50,…(10分)
.
x
=
.
x
,
s
2
s
2
,
∴甲的成績較穩(wěn)定,派甲參賽比較合適.
點評:本題主要考查莖葉圖的應(yīng)用,以及平均數(shù)和方差的計算,考查學生的計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知l,m,n是空間三條不同直線,命題p:若l⊥m,l⊥n,則m∥n;命題q:若三條直線l,m,n兩兩相交,則直線l,m,n共面,則下列命題為真命題的是( 。
A、p∧qB、p∨q
C、p∨(¬q)D、(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a、b、c>0,求證:(b+c-a)(c+a-b)(a+b-c)≤abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)關(guān)于某市的房屋面積x(平方米)與購房費用y(萬元),有如下的統(tǒng)計數(shù)據(jù):
x(平方米) 80 90 100 1l0
y(萬元) 42 46 53 59
(1)用最小二乘法求出y關(guān)于x的線性回歸方程
y
=bx+a.
(2)在已有的四組數(shù)據(jù)中任意抽取兩組,求恰有一組實際值小于預測值的概率.(參考數(shù)據(jù):
n
i=1
xi2
=36600,
n
i=1
xiyi
=19290,線性回歸方程的系數(shù)公式為b=
n
i=1
xiyi-n
.
xy
n
i=1
xi-nx-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2lnx-x2+ax,a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)求滿足條件的所有實數(shù)a,使e-1≤f(x)≤e2對x∈[1,e]恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|ax+1|,a≠0,不等式f(x)≤3的解集是{x|-1≤x≤2}
(1)求a的值;
(2)若g(x)=
f(x)+f(-x)
2
,g(x)<|k|存在實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中B、C兩點坐標分別為B(4,0)、C(0,-2),連結(jié)AC.

(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|2x+1|+|2x-1|
(Ⅰ)求不等式f(x)≤12的解集M;
(Ⅱ)當a,b∈M時,證明:3|a+b|≤|9+ab|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x-4(x≤1)
x2-4x+3(x>1)
,g(x)=log2x,則函數(shù)f(x)=g(x)的零點個數(shù)為
 

查看答案和解析>>

同步練習冊答案