A. | ($\frac{4}{3}$,+∞) | B. | [$\frac{4}{3}$,2] | C. | [$\frac{4}{3}$,2) | D. | ($\frac{4}{3}$,2] |
分析 先求出a2+b2+c2≤$\frac{4}{3}$,再求出a2+b2+c2<a+b+c=2,從而得到答案.
解答 解:由不等式a2+b2+c2≥ab+bc+ac,
得:3(a2+b2+c2)≥a2+b2+c2+2(ab+bc+ac)
即:3(a2+b2+c2≥(a+b+c)2=4,
∴a2+b2+c2≤$\frac{4}{3}$,
又a,b,c∈(0,1),
∴a>a2,b>b2,c>c2,
∴a2+b2+c2<a+b+c=2,
即$\frac{4}{3}$≤a2+b2+c2<2,
故選:C.
點(diǎn)評 本題考查了求不等式的范圍問題,考查基本不等式的性質(zhì)的應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com