【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上,O為坐標(biāo)原點(diǎn).

求橢圓C的方程;

設(shè)動直線l與橢圓C有且僅有一個(gè)公共點(diǎn),且l與圓的相交于不在坐標(biāo)軸上的兩點(diǎn),記直線,的斜率分別為,求證:為定值.

【答案】(Ⅰ) (Ⅱ)

【解析】

(I)根據(jù)橢圓的離心率和橢圓上的一點(diǎn),列方程組,求解出點(diǎn)的值,從而求得橢圓方程.(II)首先對斜率不存在的情況進(jìn)行分析,求得兩直線斜率之積.當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,聯(lián)立直線方程和橢圓方程,利用判別式為零求得參數(shù)的相互關(guān)系.聯(lián)立直線方程和圓的方程,寫出韋達(dá)定理,由此計(jì)算出的值,從而證明為定值.

解:由已知得:,解得:,,,

所以橢圓C的方程為:;

當(dāng)直線l的斜率不存在時(shí),由題意知l的方程為,

易得直線,的斜率之積,

當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為,

由方程組,得:,

因?yàn)橹本l與橢圓C有且只有一個(gè)公共點(diǎn),

所以,即,

由方程組,得,

設(shè),,則,

所以,

代入上式,得,

綜上,為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】02、4中取一個(gè)數(shù)字,從1、3、5中取兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),則所有不同的三位數(shù)的個(gè)數(shù)是______(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某產(chǎn)品16月份銷售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份i

1

2

3

4

5

6

單價(jià)(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

1)根據(jù)15月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得到的回歸直線方程是否理想?

3)預(yù)計(jì)在今后的銷售中,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5/件,為獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.華為公司研發(fā)的5G技術(shù)是中國在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個(gè)中國人的驕傲.現(xiàn)假設(shè)在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時(shí)間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時(shí)間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號是_______.

①甲線路只能輸送第四種數(shù)據(jù)包;

②乙線路不能輸送第二種數(shù)據(jù)包;

③丙線路可以不輸送第三種數(shù)據(jù)包;

④丁線路可以輸送第三種數(shù)據(jù)包;

⑤戊線路只能輸送第四種數(shù)據(jù)包.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線1(a0,b0)的右焦點(diǎn)為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線.

(1)若拋物線和直線沒有公共點(diǎn),求的取值范圍;

(2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校書店新進(jìn)了一套精品古典四大名著:《紅樓夢》、《三國演義》、《西游記》、《水滸傳》共四本書,每本名著數(shù)量足夠多,今有五名同學(xué)去書店買書,由于價(jià)格較高,五名同學(xué)打算每人只選擇一本購買.

(1)求“每本書都有同學(xué)買到”的概率;

(2)求“對于每個(gè)同學(xué),均存在另一個(gè)同學(xué)與其購買的書相同”的概率;

3)記X為五位同學(xué)購買相同書的個(gè)數(shù)的最大值,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)的圖象向左平移1個(gè)單位后關(guān)于y軸對稱,當(dāng)x2x11時(shí),[fx2)﹣fx1]x2x1)<0恒成立,設(shè)af),bf2),cf3),則a、bc的大小關(guān)系為( 。

A.cabB.cbaC.acbD.bac

查看答案和解析>>

同步練習(xí)冊答案