【題目】定義區(qū)間的長(zhǎng)度均為,多個(gè)互無(wú)交集的區(qū)間的并集長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如的長(zhǎng)度。用表示不超過(guò)的最大整數(shù),例如。記。設(shè),,若用、分別表示不等式、方程和不等式解集區(qū)間的長(zhǎng)度,則當(dāng)時(shí),____________.

【答案】2016

【解析】

先化簡(jiǎn)f(x)=[x]{x}=[x](x﹣[x])=[x]x﹣[x]2,再化簡(jiǎn)f(x)g(x),再分類(lèi)討論:①當(dāng)x[0,1)時(shí),②當(dāng)x[1,2)時(shí)③當(dāng)x[2,2018]時(shí),從而得出f(x)g(x)在0x2018時(shí)的解集的長(zhǎng)度;對(duì)于f(x)=g(x)和f(x)g(x)進(jìn)行類(lèi)似的討論即可.

f(x)=[x]{x}=[x](x﹣[x])=[x]x﹣[x]2,g(x)=x﹣1,

(i)由f(x)g(x),得到[x]x﹣[x]2x﹣1,即([x]﹣1)x>[x]2﹣1,

當(dāng)x∈[0,1)時(shí),[x]=0,上式可化為x1,此時(shí)x∈[0,1);

當(dāng)x∈[1,2)時(shí),[x]=1,上式可化為00,此時(shí)x

當(dāng)x∈[2,2018]時(shí),[x]﹣1>0,上式可化為x>[x]+1,此時(shí)x;

綜上,x∈[0,1),即d1=1;

(ii)由f(x)=g(x),得到[x]x﹣[x]2=x﹣1,即([x]﹣1)x=[x]2﹣1,

當(dāng)x∈[0,1)時(shí),[x]=0,上式化為x=1,此時(shí)x,

當(dāng)x∈[1,2)時(shí),[x]=1,上式化為0=0,此時(shí)x∈[1,2),

當(dāng)x∈[2,2018]時(shí),可得[x]﹣1>0,上式可化為x=[x]+1,此時(shí)x,

f(x)=g(x)在0≤x≤2018的解集為[1,2),即d2=1;

(iii)由f(x)g(x),得到[x]x﹣[x]2x﹣1,即([x]﹣1)x<[x]2﹣1,

當(dāng)x∈[0,1)時(shí),[x]=0,上式可化為x1,此時(shí)x,

當(dāng)x∈[1,2)時(shí),[x]=1,上式化為00,此時(shí)x,

當(dāng)x∈[2,2018]時(shí),[x]﹣1>0,上式化為x<[x]+1,此時(shí)x∈[2,2018],

∴f(x)<g(x)在0≤x≤2018時(shí)的解集為[2,2018],即d3=2016,

則d1d2d3=2016,

故答案為:2016.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>,對(duì)任意都有,且當(dāng)時(shí), .

(1)試判斷的單調(diào)性,并證明;

(2)

①求的值;

②求實(shí)數(shù)的取值范圍,使得方程有負(fù)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k值為(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列命題:①必是偶函數(shù);②當(dāng)時(shí),的圖像關(guān)于直線(xiàn)對(duì)稱(chēng);③若,則在區(qū)間上是增函數(shù);④若,在區(qū)間有最大值. 其中正確的命題序號(hào)是:( )

A. B. ②③ C. ③④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ex+ax2 , g(x)是f(x)的導(dǎo)函數(shù),
(1)當(dāng)a>0時(shí),求證:存在唯一的x0∈(﹣ ,0),使得g(x0)=0;
(2)若存在實(shí)數(shù)a,b,使得f(x)≥b恒成立,求a﹣b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c,滿(mǎn)足f(0)=2,f(x+1)-f(x)=2x-1.

(1)求函數(shù)f(x)的解析式;

(2)求f(x)在區(qū)間 [-1,2]上的最大值;

(3)若函數(shù)f(x)在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1) 求實(shí)數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;

(3) 若方程內(nèi)有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案