(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經(jīng)過(guò)點(diǎn),橢圓以雙曲線的焦點(diǎn)為焦點(diǎn)且橢圓上的點(diǎn)與焦點(diǎn)的最短距離為,求雙曲線和橢圓的方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知橢圓的離心率為,為橢圓的右焦點(diǎn),兩點(diǎn)在橢圓上,且,定點(diǎn)。
(1)若時(shí),有,求橢圓的方程;
(2)在條件(1)所確定的橢圓下,當(dāng)動(dòng)直線斜率為k,且設(shè)時(shí),試求關(guān)于S的函數(shù)表達(dá)式f(s)的最大值,以及此時(shí)兩點(diǎn)所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分) 已知在拋物線上,的重心與此拋物線的焦點(diǎn)F重合。
⑴ 寫(xiě)出該拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)F的坐標(biāo);
⑵ 求線段BC的中點(diǎn)M的坐標(biāo);
⑶ 求BC所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知?jiǎng)訄AP(圓心為點(diǎn)P)過(guò)定點(diǎn)A(1,0),且與直線相切。記動(dòng)點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P的直線l與曲線C相切,且與直線相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知點(diǎn)F( 1,0),與直線4x+3y + 1 =0相切,動(dòng)圓M與及y軸都相切. (I )求點(diǎn)M的軌跡C的方程;(II)過(guò)點(diǎn)F任作直線l,交曲線C于A,B兩點(diǎn),由點(diǎn)A,B分別向各引一條切線,切點(diǎn) 分別為P,Q,記.求證是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線及點(diǎn),直線的斜率為1且不過(guò)點(diǎn)P,與拋物線交于A,B兩點(diǎn)。
(1) 求直線在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點(diǎn)C,D,證明:AD、BC交于定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過(guò)魚(yú)群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。
(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚(yú)群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com