【題目】定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù).
(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;
(2)若,R是“a距”增函數(shù),求a的取值范圍;
(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值.
【答案】(1)見解析; (2); (3).
【解析】
(1)利用“1距”增函數(shù)的定義證明即可;(2)由“a距”增函數(shù)的定義得到在上恒成立,求出a的取值范圍即可;(3)由為“2距”增函數(shù)可得到在恒成立,從而得到恒成立,分類討論可得到的取值范圍,再由,可討論出的最小值。
(1)任意,,
因為,, 所以,所以,即是“1距”增函數(shù)。
(2).
因為是“距”增函數(shù),所以恒成立,
因為,所以在上恒成立,
所以,解得,因為,所以.
(3)因為,,且為“2距”增函數(shù),
所以時,恒成立,
即時,恒成立,
所以,
當(dāng)時,,即恒成立,
所以, 得;
當(dāng)時,,
得恒成立,
所以,得,
綜上所述,得.
又,
因為,所以,
當(dāng)時,若,取最小值為;
當(dāng)時,若,取最小值.
因為在R上是單調(diào)遞增函數(shù),
所以當(dāng),的最小值為;當(dāng)時的最小值為,
即 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸出2個紅球則打6折,若摸出1個紅球,則打7折;若沒摸出紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是0.8,現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該運動員射擊4次,至少擊中3次的概率為( )
7527 0293 7140 9857
0347 4373 8636 6947
1417 4698 0371 6233
2616 8045 6011 3661
9597 7424 7610 4281
A.0.852B.0.8192C.0.8D.0.75
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點與點.
(1)求橢圓的方程;
(2)設(shè)直線過定點,且斜率為,若橢圓上存在,兩點關(guān)于直線對稱,為坐標原點,求的取值范圍及面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù) 和的圖象如圖
給出下列四個命題:
①方程有且僅有個根;②方程有且僅有個根;
③方程有且僅有個根;④方程有且僅有個根;
其中正確命題的序號是( )
A. ①②③ B. ②③④ C. ①②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;
(2)求該汽車行駛千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設(shè);
(2)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)擲兩枚質(zhì)地均勻的骰子,計算點數(shù)和為7的概率;
(2)利用隨機模擬的方法,試驗120次,計算出現(xiàn)點數(shù)和為7的頻率;
(3)所得頻率與概率相差大嗎?為什么會有這種差異?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com