13.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=x2+3xf′(2)+lnx,則f′(2)=-$\frac{9}{4}$.

分析 求導(dǎo)數(shù)代入x=2可得f′(2)的方程,解方程可得.

解答 解:∵f(x)=x2+3xf′(2)+lnx,
∴f′(x)=2x+3f′(2)+$\frac{1}{x}$,
∴f′(2)=4+3f′(2)+$\frac{1}{2}$,
解得f′(2)=-$\frac{9}{4}$,
故答案為:-$\frac{9}{4}$.

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)算,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,M,N,P分別是AB,BC,CA邊上靠近A,B,C的三等分點(diǎn),O是△ABC平面上的任意一點(diǎn),若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,則$\overrightarrow{OM}$+$\overrightarrow{ON}$+$\overrightarrow{OP}$=$\frac{1}{3}\overrightarrow{{e}_{1}}$$-\frac{1}{2}\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={y|y=sinx},B={y|y=2x},則A∩B=(  )
A.(-1,0)B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.不等式x2>2的解集是(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x)=f(x+3),若f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$,則實(shí)數(shù)a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=f(x)對任意實(shí)數(shù)x,都有f(a+x)+f(x)=b.則y=f(x)是以2a為周期的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.正方體ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1與平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知t>0,若$\int_0^t(2x-1)dx=12$,則t=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)M(1,$\frac{\sqrt{2}}{2}$),離心率e=$\frac{\sqrt{2}}{2}$,F(xiàn)1、F2為橢圓的左、右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)圓T的圓心T(0,t)在x軸上方,且圓T經(jīng)過橢圓C兩焦點(diǎn).點(diǎn)P為橢圓C上的一動點(diǎn),PQ與圓T相切于點(diǎn)Q.
①當(dāng)Q(-$\frac{1}{2}$,-$\frac{1}{2}$)時,求直線PQ的方程;
②當(dāng)PQ取得最大值為$\frac{\sqrt{5}}{2}$時,求圓T方程.

查看答案和解析>>

同步練習(xí)冊答案