8.設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x)=f(x+3),若f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$,則實(shí)數(shù)a=$\frac{1}{4}$.

分析 通過(guò)函數(shù)的周期,化簡(jiǎn)f(2015),利用方程的解求出a即可.

解答 解:f(x)是定義在R上的奇函數(shù),且滿足f(x)=f(x+3),
可得函數(shù)的周期為:3.
f(2015)=f(3×672-1)=f(-1)=1,
f(-1)=1,f(2015)=$\frac{3a-2}{a+1}$=-1,
解得a=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查抽象函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)△ABC的兩個(gè)頂點(diǎn)A,B,且一個(gè)焦點(diǎn)為C,另一個(gè)焦點(diǎn)D在線段AB上,若|AB|=8,|AC|=6,|BC|=10,直線y=x+m(m為常數(shù))與橢圓交于點(diǎn)M(x1,y1),N(x2,y2),則x1x2的最小值為-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ex,g(x)=bx+1(a,b∈R),若f(x)≥g(x)對(duì)任意的x∈R恒成立,求b的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知A、B、C是△ABC的三個(gè)內(nèi)角,求證:
(1)cos(2A+B+C)=-cosA;
(2)sin$\frac{B+C}{2}$=cos$\frac{A}{2}$;
(3)tan$\frac{A+B}{4}$=-tan$\frac{3π+C}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各組函數(shù)中,表示同一函數(shù)的是(  )
A.y=lg(1+x)+lgx,y=lg(x+x2B.y=|x|,y=$\sqrt{{x}^{2}}$
C.y=1,y=x0D.y=a${\;}^{lo{g}_{a}x}$,y=logaax

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=x2+3xf′(2)+lnx,則f′(2)=-$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知α,β為銳角,cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5}{14}$$\sqrt{3}$,求cosβ的值及β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,∠AD1A1=60°,AD1=4,點(diǎn)P是AD1上的動(dòng)點(diǎn).
(Ⅰ)試判斷不論點(diǎn)P在AD1上的任何位置,是否都有平面B1PA1垂直于平面AA1D1?并證明你的結(jié)論;
(Ⅱ)當(dāng)P為AD1的中點(diǎn)時(shí),求異面直線AA1與B1P所稱角的余弦值;
(Ⅲ)求直線PB1與平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)G是圓F:(x+2)2+y2=4上任意一點(diǎn),R(2,0),線段GR的垂直平分線交直線GF于H.
(1)求點(diǎn)H的軌跡C的方程;
(2)點(diǎn)M(1,0),P、Q是軌跡C上的兩點(diǎn),直線PQ過(guò)圓心F(-2,0),且F在線段PQ之間,求△PQM面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案