設Sn為等比數(shù)列{an}的前n項和,已知3Sn=an+1-2,求公比q.
考點:等比數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由3Sn=an+1-2,可得n≥2時,3Sn-1=an-2,兩式相減可得3an=an+1-an,即可求公比q.
解答: 解:∵3Sn=an+1-2,
∴n≥2時,3Sn-1=an-2,
兩式相減可得3an=an+1-an,
∴4an=an+1
∴公比q=4.
點評:本題考查等比數(shù)列的性質,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
42
-
y2
32
=1的離心率為( 。
A、2
B、
5
4
C、
5
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2=1的圓心到直線x-y+2=0的距離為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一元二次不等式x2-x-2>0的解集是(  )
A、(∞,-1)∪(2,+∞)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2>2x的解集為( 。
A、{x|x>2}
B、{x|x<0}
C、{x|0<x<2}
D、{x|x<0,或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,求證:x6-x5+x2-x+1>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N*,有2Sn=2an2+an-1.
(1)求數(shù)列{an}的通項公式;
(2)記bn=
an
2n
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式x2-ax+2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a3=-4,a7=4,公差為d;在等比數(shù)列{bn}中,b3=
1
3
,b6=9,公比為q,求d和q.

查看答案和解析>>

同步練習冊答案