4.已知函數(shù)f(x)=$\frac{1}{3}$x3-4x.
(1)求f(x)的導(dǎo)數(shù)f′(x);
(2)求f(x)在閉區(qū)間[0,3]上的最大值與最小值.

分析 (1)運(yùn)用導(dǎo)數(shù)的公式和導(dǎo)數(shù)的運(yùn)算法則,求得函數(shù)的導(dǎo)數(shù);
(2)令導(dǎo)數(shù)為0,求得方程的解,注意定義域的運(yùn)用,求得極值和端點處的函數(shù)值,即可得到最值.

解答 解:(1)函數(shù)f(x)=$\frac{1}{3}$x3-4x的導(dǎo)數(shù)f′(x)=x2-4;
(2)由f′(x)=x2-4=0,解得x=2(-2舍去),
由f(0)=0,f(2)=$\frac{8}{3}$-8=-$\frac{16}{3}$,f(3)=9-12=-3,
即有f(x)在閉區(qū)間[0,3]上的最大值為0,最小值為-$\frac{16}{3}$.

點評 本題考查導(dǎo)數(shù)的運(yùn)用:求最值,主要考查求最值的方法,注意函數(shù)的定義域的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校在一次數(shù)學(xué)考試中隨機(jī)抽取了N名學(xué)生的成績并分成一下五組,第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,已知圖中從左到右后3個小組的頻率之比為3:2:1,其中第4組的頻數(shù)為20.
(1)從樣本中屬于第1組和第5組的學(xué)生中隨機(jī)抽取2人,設(shè)他們的成績分別為x,y,求事件“抽取的2人都在第1組或都在第5組”的概率;
(2)學(xué)校從成績在[75,85)的第1,2組學(xué)生中用分層抽樣的方法抽取24名學(xué)生進(jìn)行復(fù)試,若第1組被抽中的學(xué)生實力相當(dāng),且能通過復(fù)試的概率均為$\frac{1}{5}$,設(shè)第一組的學(xué)生能通過復(fù)試的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)f(x)=ax-lnx,x∈(0,e]存在極值點,則實數(shù)a的取值范圍是a>$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x-1)2+$\frac{a}{2}$ln(2x-1).
(1)當(dāng)a=-2時,求函數(shù)f(x)的極值點;
(2)記g(x)=alnx,若對任意x≥1,都有f(x)≥g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平行四邊形ABCD(如圖1),AB=4,AD=2,∠DAB=60°,E為AB的中點,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F(xiàn)是線段A1C的中點(如圖2).
(1)求證:BF∥面A1DE;
(2)求證:面A1DE⊥面DEBC;
(3)求二面角A1-DC-E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在三棱柱ABC-A′B′C′中,CC′⊥底面ABC,∠ACB=90°,AC=BC=CC′=a,E是A′C′的中點,F(xiàn)是AB的中點.
(1)求證:BC⊥平面ACC′A′;
(2)求證:EF∥平面BCC′B′;
(3)設(shè)二面角C′-AB-C的平面角為θ,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)△ABC的兩條邊長為m,n,兩個內(nèi)角為α,β,且msinα+ncosβ=0,mcosα-nsinβ=0,則α-β=$±\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中有一橢圓,橢圓方程為C:$\frac{{x}^{2}}{2}+{y}^{2}$=1.左右焦點分別F1(-1,0)和(1,0).設(shè)A,B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,AF2與BF1交于點P.求證:PF1+PF2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?dāng)?shù)字1,2,3,4,5任意排成一列,如果數(shù)字k恰好在第k個位置上,則稱有一個巧合.
(1)求巧合數(shù)ξ的分布列;
(2)求巧合數(shù)ξ的期望和方差.

查看答案和解析>>

同步練習(xí)冊答案