如圖,已知點
是橢圓
的右頂點,若點
在橢圓上,且滿足
.(其中
為坐標原點)
(1)求橢圓的方程;
(2)若直線
與橢圓交于兩點
,當
時,求
面積的最大值.
(1)
;(2)
。
試題分析:(1)因為點
在橢圓上,所以
……2分
……4分
……5分
(Ⅱ)設
,
……6分
……8分
設直線
,由
,得:
則
……10分
點
到直線
的距離
……13分
當且僅當
所以當
時,
面積的最大值為
. ……14分
點評:新課標高考對雙曲線和拋物線要求較低,重點是橢圓,但也不斷加強對圓的考查,所以學習中我們要多做一些與橢圓、圓有關的問題,多記憶一些橢圓、圓的性質(zhì).
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
曲線
的焦點
恰好是曲線
的右焦點,且曲線
與曲線
交點連線過點
,則曲線
的離心率是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x
2+y
2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓的中心在原點,焦點在x軸上,焦距等于6,離心率等于
,則此橢圓的方程是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線
的離心率為e=
,右焦點為F(c,0),方程ax
2-bx-c=0的兩個實根分別為x
1和x
2,則點P(x
1,x
2)
A.在圓x2+y2=8外 | B.在圓x2+y2=8上 |
C.在圓x2+y2=8內(nèi) | D.不在圓x2+y2=8內(nèi) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知A、B、C是橢圓
上的三點,點F(3,0),若
,則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線
的右焦點為
,右準線
與兩條漸近線交于
兩點,如果
是等邊三角形,則雙曲線的離心率
的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設雙曲線4x
2-y
2=1的兩條漸近線與直線
圍成的三角形區(qū)域(包括邊界)為E, P(x, y)為該區(qū)域內(nèi)的一動點,則目標函數(shù)z=x-2y的最小值為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(10分)過直角坐標平面
中的拋物線
,直線
過焦點
且與拋物線相交于
,
兩點.
⑴當直線的傾斜角為
時,用
表示
的長度;
⑵當
且三角形
的面積為4時,求直線
的方程.
查看答案和解析>>