已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
(1).(2).
(1) 由題意,得………………………………………………3分
解得∴橢圓C的方程為.…………………………………………6分
(2) 設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2, y2),線段AB的中點(diǎn)為M(x0,y0),
消y得,3x2+4mx+2m2-8=0,……………………………………………7分
Δ=96-8m2>0,∴-2<m<2.
.………………………………………11分
∵點(diǎn)M(x0,y0)在圓x2+y2=1上,
.…………………………………………………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過點(diǎn)F價(jià)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(III)過橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平面、兩兩垂直,定點(diǎn),A到距離都是1,P是上動(dòng)點(diǎn),P到的距離等于P到點(diǎn)的距離,則P點(diǎn)軌跡上的點(diǎn)到距離的最小值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓共焦點(diǎn)且過點(diǎn)(5,-2)的雙曲線標(biāo)準(zhǔn)方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn),它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002935496262.png" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)M到焦點(diǎn)的距離為2,的中點(diǎn),則等于(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中為坐標(biāo)原點(diǎn))

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),當(dāng)時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)作直線使得與橢圓都只有一個(gè)交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn),求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案