【題目】已知數(shù)列{an}滿足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4;
(2)猜想{an}的通項公式,并用數(shù)學歸納法證明.
【答案】
(1)解:令n=1,﹣2a2+3=0,a2= ,
令n=2,﹣ a3﹣ +4=0,a3= ,
令n=3,﹣ a4﹣ +4=0,a4=
(2)解:猜想an= (n∈N*).
證明:當n=1時,a1=1= ,所以an= 成立,
假設當n=k時,an= 成立,即ak= ,
則(ak﹣3)ak+1﹣ak+4=0,即( ﹣3)ak+1﹣ +4=0,
所以 ak+1= ,即ak+1= = ,
所以當n=k+1時,結論an= 成立.
綜上,對任意的n∈N*,an= 成立
【解析】(1)由數(shù)列{an}的遞推公式依次求出a2 , a3 , a4;(2)根據a2 , a3 , a4值的結構特點猜想{an}的通項公式,再用數(shù)學歸納法①驗證n=1成立,②假設n=k時命題成立,證明當n=k+1時命題也成立
【考點精析】關于本題考查的數(shù)列的定義和表示和數(shù)學歸納法的定義,需要了解數(shù)列中的每個數(shù)都叫這個數(shù)列的項.記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an;數(shù)學歸納法是證明關于正整數(shù)n的命題的一種方法才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=2an+1(n∈N*),Sn為其前n項和,則S5的值為( )
A.57
B.61
C.62
D.63
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個對稱中心到它對稱軸的最近距離為 .
(1)求ω的值及f(x)的對稱軸方程;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2: =1(a>0.b>0)有公共焦點F,且在第一象限的交點為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過點F且互相垂直的兩動直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點分別為G、H,探究直線GH是否過定點,若GH過定點,求出定點坐標;若直線GH不過定點,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是方程 的兩個不等實根,函數(shù)的定義域為.
(1)當時,求函數(shù)的最值;
(2)試判斷函數(shù)在區(qū)間的單調性;
(3)設,試證明:對于,若,則.
(參考公式: ,當且僅當時等號成立)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某休閑廣場中央有一個半徑為1(百米)的圓形花壇,現(xiàn)計劃在該花壇內建造一條六邊形觀光步道,圍出一個由兩個全等的等腰梯形(梯形ABCF和梯形DEFC)構成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關于θ的函數(shù)f(θ);
(2)當θ為何值時,可使得六邊形區(qū)域面積達到最大?并求最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種新產品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:
時間 | 第4天 | 第32天 | 第60天 | 第90天 |
價格(千元) | 23 | 30 | 22 | 7 |
(Ⅰ)寫出價格f(x)關于時間x的函數(shù)關系式(x表示投放市場的第x天,x∈N*);
(Ⅱ)銷售量g(x)與時間x的函數(shù)關系式為 ,則該產品投放市場第幾天的銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次.A,B兩種車輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要運送不少于900人從甲地去乙地的旅客,并于當天返回,為使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?營運成本最小為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 的展開式各項系數(shù)和為M, 的展開式各項系數(shù)和為N,(x+1)n的展開式各項的系數(shù)和為P,且M+N﹣P=2016,試求 的展開式中:
(1)二項式系數(shù)最大的項;
(2)系數(shù)的絕對值最大的項.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com