已知F為拋物線C:y=x2的焦點(diǎn),A(x1,y1),B(x2,y2)是拋物線C上的兩點(diǎn),且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時(shí),直線AB與拋物線C所圍成的圖形的面積最?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點(diǎn)M的軌跡方程.
(1)由題知,拋物線C的焦點(diǎn)F(0,
1
4
),A(x1
x21
),B(x2,
x22
),所以
FA
=(x1,
x21
-
1
4
),
FB
=(x2
x22
-
1
4
)

因?yàn)?span dealflag="1" mathtag="math" >
FA
FB
,所以
FA
FB
共線,即
x1(
x22
-
1
4
)-x2(
x21
-
1
4
)=0

即(x2-x1)(x1x2+
1
4
)=0

因?yàn)閤1<x2,所以x1x2=-
1
4
.(2分)
由題設(shè)條件x1<x2知,直線AB的斜率k一定存在,且
k=
y2-y1
x2-x1
=
x22
-
x21
x2-x1
=x1+x2
.(3分)
設(shè)直線AB的方程為y=kx+
1
4
,則直線AB與拋物線C所圍的面積
S=
x2x1
(kx+
1
4
-x2)dx=(-
1
3
x3+
k
2
x2+
1
4
x)
|x2x1

=(-
1
3
x32
+
k
2
x22
+
1
4
x2)-(-
1
3
x31
+
k
2
x21
+
1
4
x1)

=-
1
3
(
x32
-
x31
)+
k
2
(
x22
-
x21
)+
1
4
(x2-x1)

=(x2-x1)[-
1
3
(
x22
+x2x1+
x21
)+
k
2
(x2+x1)+
1
4
]

=
(x2+x1)2-4x2x1
[-
1
3
(x2+x1)2+
1
3
x2x1+
k
2
(x2+x1)+
1
4
]

=
k2+1
[-
1
3
k2-
1
3
×
1
4
+
k
2
•k+
1
4
]


=
1
6
(k2+1)
k2+1
1
6

當(dāng)且僅當(dāng)k=0,即x1=-x2,即λ=-1時(shí),Smin=
1
6
.(5分)
(2)由題知A(x1,x12),B(x2,x22),且x1<x2,則直線AB的斜率kAB=
y2-y1
x2-x1
=
x21
-
x22
x2-x1
=x1+x2

設(shè)直線AB的方程為y-x12=k(x-x1),即y=(x1+x2)x-x1x2
則直線AB與拋物線C所圍的面積
S=
x2x1
[(x1+x2)x-x1x2-x2]dx

=(
x1+x2
2
x2-x1x2x-
1
3
x3)
|x2x1
=
1
6
(x2-x1)3
,
因?yàn)镾=
4
3
,所以
1
6
(x2-x1)3=
4
3
,得x2-x1
=2.(8分)設(shè)M(x,y),則x=
x1+x2
2
=x1
+1,
y=
y1+y2
2
=
x21
+
x22
2
=
x21
+2x1+2=(x1+1)2
+1,
所以y=x2+1.
故點(diǎn)M的軌跡方程為y=x2+1.(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線C:y=x2的焦點(diǎn),A(x1,y1),B(x2,y2)是拋物線C上的兩點(diǎn),且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時(shí),直線AB與拋物線C所圍成的圖形的面積最小?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興一模)已知F為拋物線C:y2=4x焦點(diǎn),其準(zhǔn)線交x軸于點(diǎn)M,點(diǎn)N是拋物線C上一點(diǎn)
(Ⅰ)如圖1,若MN的中垂線恰好過焦點(diǎn)F,求點(diǎn)N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點(diǎn)P,Q,若在拋物線C上存在點(diǎn)R,使FPRQ為平行四邊形,試探究直線l是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市富陽(yáng)市場(chǎng)口中學(xué)高二(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知F為拋物線C:y2=4x焦點(diǎn),其準(zhǔn)線交x軸于點(diǎn)M,點(diǎn)N是拋物線C上一點(diǎn)
(Ⅰ)如圖1,若MN的中垂線恰好過焦點(diǎn)F,求點(diǎn)N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點(diǎn)P,Q,若在拋物線C上存在點(diǎn)R,使FPRQ為平行四邊形,試探究直線l是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省海安高級(jí)中學(xué)、南京外國(guó)語(yǔ)學(xué)校、金陵中學(xué)高三第三次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知F為拋物線C:y=x2的焦點(diǎn),A(x1,y1),B(x2,y2)是拋物線C上的兩點(diǎn),且x1<x2
(1)若為何值時(shí),直線AB與拋物線C所圍成的圖形的面積最?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為,求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案