已知函數(shù)f(x)=-x3+bx2-
4
27
b3(b>0),有且僅有兩個(gè)不同的零點(diǎn)x1,x2,則( 。
A、x1+x2>0,x1x2<0
B、x1+x2>0,x1x2>0
C、x1+x2<0,x1x2<0
D、x1+x2<0,x1x2>0
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),從而得到函數(shù)的單調(diào)區(qū)間,畫(huà)出函數(shù)的圖象,進(jìn)而得到答案.
解答: 解:∵f′(x)=-3x2+2bx,由f′(x)=0得到x=0或
2
3
b,
∴f(x)在(-∞,0)遞減,在(0,
2
3
b)遞增,在(
2
3
b,+∞)遞減,
畫(huà)出函數(shù)f(x)的圖象,如圖示:
,
由圖象得:x1<0,x2=
2
3
b>0,x1•x2<0,
又f(-
2
3
b)=
16
27
b3>0,
∴x1>-
2
3
b,
∴x1+x2>0,
故選:A.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,判斷函數(shù)的零點(diǎn)問(wèn)題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex-1+
a
x
(a∈R).
(1)若函數(shù)f(x)在x=1處有極值,求a的值;
(2)在(1)條件下,若函數(shù)g(x)=f(x)+b在(0,+∞)上有零點(diǎn),求b的最大值;
(3)若f(x)在(1,2)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)幾何體的三視圖及尺寸如圖所示,則該幾何體的體積為( 。
A、
5
3
12
B、
2
3
3
C、
3
6
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果
C
2
n
=28,則n的值為( 。
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+(k+1)x+7有一根在[1,2]時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿(mǎn)足條件f(0)=0和f(x+2)-f(x)=4x
(1)求f(x);        
(2)求f(x)在區(qū)間[a,a+2](a∈R)上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿(mǎn)足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立;則稱(chēng)函數(shù)f(x)為理想函數(shù).
下面有三個(gè)命題:
若函數(shù)f(x)為理想函數(shù),則f(0)=0;
函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0
其中正確的命題個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二此函數(shù)的圖象開(kāi)口向下且經(jīng)過(guò)(0,1),對(duì)稱(chēng)軸為x=2且在[0,5]上的最小值為-1,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2ax+blnx-1,設(shè)曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)為y=0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=mf(x)+
x2
2
-mx.
(i)若m∈R,求函數(shù)g(x)的單調(diào)區(qū)間;
(ii)若1<m<3,求證:當(dāng)x∈[1,e]時(shí),g(x)<
e2
2
-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案