【題目】已知函數(shù)). 

(1)若在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,且有兩個(gè)極值點(diǎn), ),求取值范圍.

【答案】(1);(2)

【解析】試題分析:函數(shù)在某區(qū)間上單調(diào)遞增,說明函數(shù)的導(dǎo)數(shù)大于或等于0在該區(qū)間上恒成立,分離參數(shù)m,利用極值原理求出參數(shù)m的取值范圍;當(dāng)時(shí)有兩個(gè)極值點(diǎn)為方程的兩個(gè)根,根據(jù)根與系數(shù)關(guān)系找出與系數(shù)的關(guān)系,根據(jù)m的范圍解出的范圍,表示出,根據(jù)減元,利用構(gòu)造函數(shù)法求出其取值范圍.

試題解析:

(1)的定義域?yàn)?/span>, 在定義域內(nèi)單調(diào)遞增,

,即上恒成立,

由于,所以,實(shí)數(shù)的取值范圍是.

(2)由(1)知,當(dāng)時(shí)有兩個(gè)極值點(diǎn),此時(shí), ,∴,

因?yàn)?/span>,解得

由于,于是

.

,則,

上單調(diào)遞減,

.

.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)圖象上不同兩點(diǎn), 處切線的斜率分別是, ,規(guī)定為線段的長度)叫做曲線在點(diǎn)之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

③設(shè)點(diǎn), 是拋物線上不同的兩點(diǎn),則;

④設(shè)曲線是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn) ,且,若恒成立,則實(shí)數(shù)的取值范圍是

其中真命題的序號(hào)為__________.(將所有真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,EF分別是PA,PC的中點(diǎn).

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;

(2)設(shè)AB=PC=2,BC=1,求三棱錐P-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè) π<x< π,且方程f(x)=m有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性并證明;
(2)若f(x)的定義域?yàn)閇α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;
(3)若0<m<1,使f(x)的值域?yàn)閇logmm(β﹣1),logmm(α﹣1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別是,已知.

(1)求角的大;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)bn=n2 求數(shù)列[bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),F(xiàn)為左焦點(diǎn),原點(diǎn)O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,求證:直線BM與直線AN的交點(diǎn)G在定直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案