分析 由已知及同角的三角函數(shù)關(guān)系式可求cosθ,sinθ的值,根據(jù)兩角和的余弦函數(shù)公式即可求值得解.
解答 解:∵tanθ=-2,-$\frac{π}{2}$<θ<0,
∴cosθ=$\sqrt{\frac{1}{1+ta{n}^{2}θ}}$=$\sqrt{\frac{1}{1+4}}$=$\frac{\sqrt{5}}{5}$,sinθ=-$\sqrt{1-co{s}^{2}θ}$=-$\sqrt{1-\frac{1}{5}}$=-$\frac{2\sqrt{5}}{5}$,
∴cos(θ+$\frac{π}{6}$)=cosθcos$\frac{π}{6}$-sin$θsin\frac{π}{6}$=$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{3}}{2}$+$\frac{2\sqrt{5}}{5}$×$\frac{1}{2}$=$\frac{\sqrt{15}+2\sqrt{5}}{10}$.
點評 本題主要考查了同角的三角函數(shù)關(guān)系式,特殊角的三角函數(shù)值,兩角和的余弦函數(shù)公式的應(yīng)用,考查了計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com