【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到如表(單位:人):

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出3人贈(zèng)送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ)能在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān);(Ⅱ)①;②,

【解析】

(Ⅰ)先根據(jù)公式計(jì)算卡方,再對(duì)照數(shù)據(jù)確定犯錯(cuò)誤的概率,(Ⅱ)①先根據(jù)分層抽樣確定人數(shù),再根據(jù)古典概型概率公式求概率,②先確定隨機(jī)變量服從二項(xiàng)分布,再根據(jù)二項(xiàng)分布得分布列與數(shù)學(xué)期望.

(Ⅰ)由列聯(lián)表可知,.

∴能在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān).

(Ⅱ)①依題意,可知所抽取的10名30歲以上網(wǎng)民中,經(jīng)常使用共享單車的有(人),

偶爾或不用共享單車的有(人).

則選出的3人中至少2人經(jīng)常使用共享單車的概率為

②由列聯(lián)表,可知抽到經(jīng)常使用共享單位的頻率為,

將頻率視為概率,即從市市民中任意抽取1人,

恰好抽到經(jīng)常使用共享單車的市民的概率為

由題意得,∴;.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,且,,三點(diǎn)中恰有兩點(diǎn)在拋物線上,另一點(diǎn)是拋物線的焦點(diǎn).

(1)求證:、三點(diǎn)共線;

(2)若直線過拋物線的焦點(diǎn)且與拋物線交于、兩點(diǎn),點(diǎn)軸的距離為,點(diǎn)軸的距離為,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實(shí)數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,記直線與曲線分別交于兩點(diǎn).

(1)求曲線的直角坐標(biāo)方程;

(2)證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前共享單車基本覆蓋饒城市區(qū),根據(jù)統(tǒng)計(jì),市區(qū)所有人騎行過共享單車的人數(shù)已占,騎行過共享單車的人數(shù)中,有是學(xué)生(含大中專、高職及中學(xué)生),若市區(qū)人口按40萬計(jì)算,學(xué)生人數(shù)約為9.6萬.

(1)任選出一名學(xué)生,求他(她)騎行過共享單車的概率;

(2)隨著單車投放數(shù)量增加,亂停亂放成為城市管理的問題,如表是本市某組織累計(jì)投放單車數(shù)量與亂停亂放單車數(shù)量之間關(guān)系圖表:

累計(jì)投放單車數(shù)量

100000

120000

150000

200000

230000

亂停亂放單車數(shù)量

1400

1700

2300

3000

3600

計(jì)算關(guān)于的線性回歸方程(其中精確到,值保留三位有效數(shù)字),并預(yù)測(cè)當(dāng)時(shí),單車亂停亂放的數(shù)量;

(3)已知信州區(qū)、廣豐區(qū)、上饒縣、經(jīng)開區(qū)四區(qū)中,其中有兩個(gè)區(qū)的單車亂停亂放數(shù)量超過標(biāo)準(zhǔn),在“大美上饒”活動(dòng)中,檢查組隨機(jī)抽取兩個(gè)區(qū)調(diào)查單車亂停亂放數(shù)量,表示“單車亂停亂放數(shù)量超過標(biāo)準(zhǔn)的區(qū)的個(gè)數(shù)”,求的分布列和數(shù)學(xué)期望.

參考公式和數(shù)據(jù):回歸直線方程中的斜率和截距的最小二乘估計(jì)分別為

,

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,側(cè)面是等腰直角三角形,,平面平面,點(diǎn)分別是棱上的點(diǎn),平面平面.

(1)確定點(diǎn)的位置,并說明理由;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰抓到最后一個(gè)球誰贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋里裝有個(gè)白球和個(gè)紅球,從口袋中任取個(gè)球.

(1)共有多少種不同的取法?

(2)其中恰有一個(gè)紅球,共有多少種不同的取法?

(3)其中不含紅球,共有多少種不同的取法?

查看答案和解析>>

同步練習(xí)冊(cè)答案