已知△ABC的周長為4(
2
+1),且sinB+sinC=
2
sinA.
(1)求邊長a的值;
(2)若S△ABC=3sinA,求角A的大。ńY果用反三角函數(shù)值表示).
考點:正弦定理,反三角函數(shù)的運用
專題:解三角形
分析:(1)利用正弦定理,將角轉化為邊之間的關系,利用周長即可求出a的值.
(2)利用三角形的面積公式,求出b,c的關系,利用余弦定理即可求出A的大小.
解答: 解:(1)∵sinB+sinC=
2
sinA,
∴由正弦定理得,b+c=
2
a,(*)
∵a+b+c=4(
2
+1),
∴解得a=4;
(2)由S△ABC=
1
2
bcsinA=3sinA,得bc=6,
兩邊平方(*)式,求得b2+c2=20,
由余弦定理,cosA=
b2+c2-a2
2bc
=
20-16
2×6
=
4
12
=
1
3
,
故A=arccos
1
3
點評:本題主要考查正弦定理和余弦定理的應用,要求熟練掌握正弦定理和余弦定理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩機床加工同一種零件,抽檢得到它們加工后的零件尺寸x(單位:cm)及個數(shù),如下表:
零件尺寸x 1.01 1.02 1.03 1.04 1.05
零件個數(shù)y 3 7 8 9 3
7 4 4 4 a
由表中數(shù)據(jù)得y關于x的線性回歸方程為y=-91+l00x(1.01≤x≤1.05),其中合格零件尺寸為1.03±0.0l(cm).
(Ⅰ)完成下面列聯(lián)表,并判斷是否有99%的把握認為加工零件的質量與甲、乙有關;
合格零件數(shù) 不合格零件數(shù) 合計
合計
(Ⅱ)從甲、乙加工后尺寸大于1.03cm的零件中各取1個,求恰好取到2個都是不合格零件的概率.附:參考公式及臨界值表.
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知四點A(
2
,
3
),B(-2,0),C(
6
,1),D(-
2
,-
3
)中有且只有三點在橢圓E: 
x2
a2
+
y2
b2
=1(a>b>0)上.
(1)求橢圓E的方程;
(2)若P是圓x2+y2=12上的一個動點,過動點P作直線l1、l2,使得l1、l2與橢圓E都相切,求證:l1⊥l2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-2
的定義域為A,函數(shù)g(x)=
2
x
(1≤x≤2)的值域為B.
(Ⅰ)求A∩B;
(Ⅱ)若C={y|a<y<2a-1},且C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的方程為y=ax2-1,直線l的方程為y=
x
2
,點A(3,-1)關于直線l的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知P(
1
2
,1),點F(0,-
15
16
)是拋物線的焦點,M是拋物線上的動點,求|MP|+|MF|的最小值及此時點M的坐標;
(3)設點B、C是拋物線上的動點,點D是拋物線與x軸正半軸交點,△BCD是以D為直角頂點的直角三角形.試探究直線BC是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某超市進行促銷活動,規(guī)定消費者消費每滿100元可抽獎一次.抽獎規(guī)則:從裝有三種只有顏色不同的球的袋中隨機摸出一球,記下顏色后放回,依顏色分為一、二、三等獎,一等獎獎金15元,二等獎獎金10元,三等獎獎金5元.活動以來,中獎結果統(tǒng)計如圖所示.消費者甲購買了238元的商品,準備參加抽獎.以頻率作為概率,解答下列各題.
(Ⅰ)求甲恰有一次獲得一等獎的概率;
(Ⅱ)求甲獲得20元獎金的概率;
(Ⅲ)記甲獲得獎金金額為X,求X的分布列及期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1過點A(1,
3
2
),離心率為
1
2
,左右焦點分別為F1、F2.過點F1的直線l交橢圓于A、B兩點.
(1)求橢圓C的方程.
(2)當△F2AB的面積為
12
2
7
時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M是邊長為2
2
的正方形ABCD內或邊界上一動點,N是邊BC的中點,則
AN
AM
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有
 
條.

查看答案和解析>>

同步練習冊答案