【答案】
分析:(1)記F(x)=sinx-
x,可求得F′(x)=cosx-
,分x∈(0,
)與x∈(
,1)兩類討論,可證得當(dāng)x∈[0,1]時(shí),F(xiàn)(x)≥0,即sinx≥
x;記H(x)=sinx-x,同理可證當(dāng)x∈(0,1)時(shí),sinx≤x,二者結(jié)合即可證得結(jié)論;
(2)利用(1),可求得當(dāng)x∈[0,1]時(shí),ax+x
2+
+2(x+2)cosx-4≤(a+2)x,分a≤-2與a>-2討論即可求得實(shí)數(shù)a的取值范圍.
解答:(1)證明:記F(x)=sinx-
x,則F′(x)=cosx-
.
當(dāng)x∈(0,
)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)在[0,
]上是增函數(shù);
當(dāng)x∈(
,1)時(shí),F(xiàn)′(x)<0,F(xiàn)(x)在[
,1]上是減函數(shù);
又F(0)=0,F(xiàn)(1)>0,所以當(dāng)x∈[0,1]時(shí),F(xiàn)(x)≥0,即sinx≥
x…3
記H(x)=sinx-x,則當(dāng)x∈(0,1)時(shí),H′(x)=cosx-1<0,所以H(x)在[0,1]上是減函數(shù);則H(x)≤H(0)=0,
即sinx≤x.
綜上,
x≤sinx≤x…5
(2)∵當(dāng)x∈[0,1]時(shí),ax+x
2+
+2(x+2)cosx-4
=(a+2)x+x
2+
-4(x+2)
≤(a+2)x+x
2+
-4(x+2)
=(a+2)x,
∴當(dāng)a≤-2時(shí),不等式ax+x
2+
+2(x+2)cosx≤4對(duì)x∈[0,1]恒成立,…9
下面證明,當(dāng)a>-2時(shí),不等式ax+x
2+
+2(x+2)cosx≤4對(duì)x∈[0,1]不恒成立.
∵當(dāng)x∈[0,1]時(shí),ax+x
2+
+2(x+2)cosx-4
=(a+2)x+x
2+
-4(x+2)
≥(a+2)x+x
2+
-4(x+2)
=(a+2)x-x
2-
≥(a+2)x-
x
2=-
x[x-
(a+2)].
所以存在x
∈(0,1)(例如x
取
和
中的較小值)滿足
ax
+
+
+2(x
+2)cosx
-4>0,
即當(dāng)a>-2時(shí),不等式ax+x
2+
+2(x+2)cosx≤4對(duì)x∈[0,1]不恒成立.
綜上,實(shí)數(shù)a的取值范圍是(-∞,-2].
點(diǎn)評(píng):本題考查不等式的證明,突出考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)恒成立問題,考查分類討論思想與等價(jià)轉(zhuǎn)化思想的綜合應(yīng)用,屬于難題.