已知是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線上,且
,求證:

見解析

解析試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/b/1anxk3.png" style="vertical-align:middle;" />是雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在雙曲線上,
所以有.
平方得:
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/3/1nfwx2.png" style="vertical-align:middle;" />,所以
,那么,即

考點(diǎn):本小題主要考查雙曲線中基本量的關(guān)系、雙曲線的定義、勾股定理的應(yīng)用,考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力.
點(diǎn)評:雙曲線上的點(diǎn)滿足,這一性質(zhì)經(jīng)常用到,可以幫助解題,應(yīng)該準(zhǔn)確靈活應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
給定拋物線,是拋物線的焦點(diǎn),過點(diǎn)的直線相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題15分)設(shè)拋物線和點(diǎn),.斜率為的直線與拋物線相交不同的兩個(gè)點(diǎn).若點(diǎn)恰好為的中點(diǎn).
(1)求拋物線的方程,
(2) 拋物線上是否存在異于的點(diǎn),使得經(jīng)過點(diǎn)的圓和拋物線處有相同的切線.若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)(理科)已知橢圓,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線交橢圓于兩點(diǎn),交直線于點(diǎn),且,,
求證:為定值,并計(jì)算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)已知直線經(jīng)過橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動點(diǎn),直線與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;
(Ⅱ)求線段的長度的最小值;
(Ⅲ)當(dāng)線段的長度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分) 已知拋物線與直線相交于兩點(diǎn).
(1)求證:以為直徑的圓過坐標(biāo)系的原點(diǎn);(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于兩點(diǎn).
①若,求直線的斜率;
②設(shè)點(diǎn)在線段上運(yùn)動,原點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,AB是過橢圓左焦點(diǎn)F的一弦,C是橢圓的右焦點(diǎn),已知|AB|=|AC|=4,∠BAC=90°,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案