8.P(-1,3)、Q(2,0)兩點(diǎn)間的距離為(  )
A.$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.$\sqrt{3}$

分析 利用兩點(diǎn)間的距離公式,進(jìn)行求解即可.

解答 解:∵P(-1,3)、Q(2,0),
∴|PQ|=$\sqrt{(-1-2)^{2}+{3}^{2}}$=$\sqrt{9+9}=\sqrt{18}$=3$\sqrt{2}$,
故選:C

點(diǎn)評(píng) 本題主要考查兩點(diǎn)間的距離公式的計(jì)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若數(shù)列{an}的前n項(xiàng)之和為Sn=3+2n,則a12+a22+a32+…+an2=$\frac{{4}^{n}+71}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)全集U=R,集合A=$\{x|\frac{1}{16}≤{2^{-x}}$<1,x∈Z\},B={x|(x-3)(x+1)≥0,x∈Z},則(∁UB)∩A=(  )
A.{0,1,2,3,4}B.{1,2,3}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若sinx=$\frac{1}{3}$,$x∈[{\frac{π}{2},\frac{3π}{2}}]$,則x=$π-arcsin\frac{1}{3}$.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=sin$\frac{x}{3}cos\frac{x}{3}+\sqrt{3}{cos^2}\frac{x}{3}$.
(1)將f(x)寫(xiě)成Asin(ωx+φ)+h(A>0)的形式,并求其圖象對(duì)稱(chēng)中心的橫坐標(biāo);
(2)若函數(shù)f(x)的定義域?yàn)?D=(0,\frac{π}{3})$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{lnx+a}{{e}^{x}}$(a∈R,e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行,求a的值;
(Ⅱ)設(shè)g(x)=(x3+2x2+2x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x>0,g(x)<2+$\frac{2}{{e}^{a+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦點(diǎn)F作斜率k=-1的直線交橢圓于A,B兩點(diǎn),且$\overrightarrow{OA}+\overrightarrow{OB}與\overrightarrow a=(1,\frac{1}{3})$共線.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上任意一點(diǎn),且$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R)證明:m2+n2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為 f′(x),對(duì)任意x∈R都有f(x)>f′(x)成立,則( 。
A.3f(ln2)<2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)>2f(ln3)D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在多面體ABCDEF中,四邊形ABCD是邊長(zhǎng)為1的正方形,BF⊥平面ABCD,DE∥BF.
(Ⅰ)求證:AC⊥EF;
(Ⅱ)若BF=2,DE=1,在EF上取點(diǎn)G,使BG∥平面ACE,求直線AG與平面ACE所成角θ的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案